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Though existing state-of-the-art denoising algorithms, such as BM3D, LPG-PCA and DDF, obtain remark-
able results, these methods are not good at preserving details at high noise levels, sometimes even intro-
ducing non-existent artifacts. To improve the performance of these denoising methods at high noise
levels, a generic denoising framework is proposed in this paper, which is based on guided principle com-
ponent analysis (GPCA). The propose framework can be split into two stages. First, we use statistic test to
generate an initial denoised image through back projection, where the statistical test can detect the sig-
nificantly relevant information between the denoised image and the corresponding residual image.
Second, similar image patches are collected to form different patch groups, and local basis are learned
from each patch group by principle component analysis. Experimental results on natural images, contam-
inated with Gaussian and non-Gaussian noise, verify the effectiveness of the proposed framework.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

In many applications like photography under low light and
surveillance systems, prominent noise exists due to the physical
acquisition process. Such noise could affect the following applica-
tions such as High Efficiency Video Coding (HEVC) [1,2], object
recognition [3], image segmentation [4], contrast enhancement
[5–7], video coding [8,9] and image interpolation [10].

Existing denoising methods adopt different approaches to
address the problem. Much of the early work concentrates on pro-
cessing the image in the spatial domain, due to the simplicity of
such methods [11–13]. Instead, much work prefers to remove
noise in the transform domain (e.g. wavelet), due to the good capa-
bility in noise suppression and edge-preserving for such methods
[14–17]. Recently, most of state-of-the-art denoising methods
[18–25] share a common patch-based framework. For example,
block matching and 3-D (BM3D) [18] obtains satisfactory results
by combining nonlocal means (self-similarity) and transform
domain method. By contrast, dual domain filter (DDF) [19] is a sim-
pler hybrid method that comprises the simple bilateral filter and
Fourier transform. Another effective denoising method (LPG-PCA)
[20] applies block matching to group similar patches and shrinks
PCA transformation coefficients to suppress the noise. Other
state-of-the-art methods also achieve remarkable results by using
self-similarity and low rank approximation (e.g., spatially adaptive
iterative singular-value thresholding method (SAIST) [21]), or by
learning models from natural images [22–24].

Despite the impressive results achieved by state-of-the-art
methods, most of these denoising methods, such as BM3D, LPG-
PCA and DDF, tend to generate artifacts around the edges, espe-
cially at high noise levels. Moreover, it is shown that there is still
room for improvement of existing methods due to the imperfect
denoising that causes the loss of image details [26]. To preserve
the image details better, much work [27–31] focuses on utilizing
the residual information from method-noise (aka residual image),1

based on the fact that lost details of the original image still exist in
method-noise. Among them, back projection is an efficient method
to exploit the residual information [28]. In later work, iterative back
projection is used to extract the residual information with a no-
reference image quality measurement [27]. The work in [29] extends
this iterative way to a novel nonlocal iterative technique for image
enhancement.

Inspired by the above observations, we propose a generic
denoising framework, named GPCA, to improve the performance
ween the
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of existing methods. In GPCA, we propose a new back projection
based on statistical test to extract the useful information from
method-noise, followed by the PCA-based denoising to improve
the performance. Our GPCA framework can be divided into two
stages. The first stage produces an initial denoised image (a guide
image for the second stage) via the proposed back projection. Then
Pearson’s correlation coefficient test (Pearson-test) is applied
locally to test the independence between the denoised image and
the corresponding method-noise, which guarantees that only the
significantly relevant counterparts are added to the denoised
image. The second stage utilizes nonlocal self-similarity, i.e., simi-
lar patches are collected for the PCA-based denoising. In the PCA
transform domain, we keep image structures while removing noise
by only keeping the prominent significant eigenvalues and its cor-
responding eigenvectors. Experimental results demonstrate that
our framework is able to reduce the artifacts produced by the
state-of-the-art methods.

The rest of this paper is organized as follows. The existing liter-
ature on denoising is summarized in Section 2. In Section 3, we
briefly review PCA transformation. The proposed framework is
elaborated in Section 4, including how to obtain the guide image,
and how to implement patch grouping and PCA-based denoising.
Section 5 reports the experimental results. Finally, we draw the
conclusion in Section 6.
2. Related works

The following part is a rough categorization of the plethora of
image denoising methods that have been developed: spatial
domain, transform domain and learning-based methods [32].

Spatial domain methods usually estimate each pixel by per-
forming a weighted average of its local or nonlocal neighborhoods,
thus leading to two types of filters: local and nonlocal filters. The
local filters are widely used in the early stages due to the relatively
low complexity. Among this type of work, the well-known bilateral
filer (BF) [11], which computes the pixel similarity based on the
spatial distances and range (radiometric) distances, has received
much attention for its edge preserving and noise smoothing. To
date, BF and its invariants have been widely used in different con-
texts [33,34,12]. However, the local filters usually cannot work
well at high noise levels. To overcome this drawback, the so-
called nonlocal means (NLM) filter, as a representative of the non-
local filters, extends the pixel similarity in a local region to the
patch similarity in the whole image [35,13]. Essentially, NLM
makes use of the structural redundancy, named self-similarity
which is inherent in natural images. So far, there have been so
many variants of NLM about how to speed up NLM [36,37], further
improve the performance of NLM [38,39], or choose the parame-
ters of NLM [40,41]. These nonlocal filters can remove the noise
effectively but often generate over-smooth images.

On the contrary, transform domain methods perform better at
preserving the details of images. These methods assume that the
image can be properly represented by the orthogonal basis (e.g.,
wavelets, curvelets and contourlets) with a series of coefficients.
The smaller coefficients correspond to the high frequency part of
the input image, which are related to noise. Hence, noise can be
effectively removed using different coefficient shrinkage strategies,
such as BayesShrink [14], ProbShrink [15], SUREShrink [16] and
BLS-GSM [17]. Such transform domain methods are popular in var-
ious applications, due to the simplicity and efficiency in preserving
the main structures of images (e.g., edges). However, such methods
often produce the ringing artifacts around the edges, and fail to
perform well on the images with more complex characteristics.

Recently, much work focuses on learning dictionary from
noisy/clean images for restoration problems [24,42,43]. To obtain
a sparse representation of image patches, K-clustering with singu-
lar value decomposition (K-SVD) is proposed to train an over-
complete dictionary in [42]. In later research work, some represen-
tative dictionary learning based methods attempt to learn a struc-
tured dictionary, such as learned simultaneous sparse coding
(LSSC) [43]. Although most of learning-based denoising methods
have obtained competitive performance compared to the state-
of-the-art methods, such learning methods are computationally
expensive.

3. PCA transformation

PCA is a well-known linear dimension reduction method, which
aims to find a linear projection of high dimensional data into a
lower dimensional subspace. Let X be a sample matrix related by
a linear transformation P, i.e., Z ¼ PX, where Z is the transformed
coefficients. The standard PCA transformation mainly consists of
four steps as follows.

(1) Obtain the sample matrix X 2 Rm�n, which contains n sample
vectors in total and each m-dimension sample vector is
arranged in columns.

(2) Obtain the centralized sample matrix X, i.e., each entry of i-
th row of X subtracts the mean value of i-th row of X.

(3) Diagonalize the covariance matrix C ¼ ð1=nÞX XT . The goal
of PCA is to find an orthonormal transformation matrix P
to decorelate X, i.e., Y ¼ PX, so that the covariance matrix
C is diagonal. Since the matrix C is symmetrical, it can be
formulated as:
C ¼ UKUT ; ð1Þ
where U ¼ ½/1; . . . ;/m� is the m�m orthogonal eigenvector
matrix, and K ¼ diagfk1; . . . ; kmg is the diagonal eigenvalue
matrix with eigenvalues in descending order, i.e.
k1 P k2 P � � �P km. The terms /1; . . . ;/m ð/i 2 Rm�1Þ and
k1; . . . ; km are the eigenvectors and eigenvalues of C.
Thus, it can be observed that the PCA transformation matrix
can be expressed as

P ¼ UT : ð2Þ

(4) Decorrelate the centralized matrix X by
Z ¼ PX; ð3Þ
where Z is the decorrelated dataset of X.
The basic idea of using PCA to denoise images is that PCA can
fully decorrelate the original dataset. In other words, the original
signal and noise can be distinguished in the PCA domain, since
the energy of a signal will generally concentrate on a small subset
of the PCA transformed dataset, while the energy of noise will gen-
erally spread over the whole dataset evenly. Therefore, the noise
can be removed by keeping those significant subset of the PCA
transformed dataset. Based on this observation, some related
works [20,44,45] based on PCA has been successfully applied to
image denoising, and achieve competitive results over the state-
of-the-art methods.

4. The proposed GPCA framework

The main problem of the PCA-based denoising methods is that
they learn orthogonal basis of PCA transform from the noisy image
directly, thus resulting in large estimation bias, particularly at high
levels of noise. Instead, in this paper, an effective denoising
framework is proposed to estimate noise-free images based on
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Fig. 1. Diagram of the proposed denoising framework.
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back projection and guided PCA denoising. Specifically, the pro-
posed GPCA framework can be divided into two stages, as illus-
trated in Fig. 1. The first stage generates a modified guide image
by the proposed back projection, which uses Pearson-test to detect
the significantly relevant counterparts between the guide image
and the corresponding method-noise. The second stage collects
similar image patches from the guide image, followed by the
PCA-based denoising to further improve the performance. More
details of our framework will be shown in the following parts.

4.1. The first stage based on back projection via statistical test

4.1.1. Noise filtering to produce an initial guide image
Let Fn denote a noisy image defined by

Fn ¼ Fþ e; ð4Þ

where F and e represent the clean image and additive white
Gaussian noise (AWGN) with variance r2, respectively.

The first step in our denoising framework is to perform a noise

filtering procedure to generate an initial guide image bF,
bF ¼ /ðFnÞ; ð5Þ
where /ð�Þ stands for a certain existing denoising filter (e.g., BF,
NLM or BM3D filter).

Although the choice of denoising filter influences the final per-
formance, this is not the core of our framework. The proposed
framework concentrates on exploiting the image content from
method-noise to further improve the performance of other
(a) (b)
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Fig. 2. (a): The denoised result of DDF for Cameraman at r ¼ 50. (b): The corresponding
method-noise. (The significantly relevant regions are colored in yellow.) (d): The result
black: do not reject). (For interpretation of the references to colour in this figure legend
methods. Therefore, our denoising framework is a post-
processing technique for existing denoising methods.

4.2. The proposed back projection via Pearson-test

Many existing filtering methods (e.g., LPG-PCA, BM3D and DDF)
are specifically designed to remove noise. However, many image
details are also removed during the processing of filtering. Fortu-
nately, the lost information still exists in method-noise. As a con-
sequence, it is expected that the denoising performance can be
further improved, if we can extract the image details from
method-noise properly.

Let R denote the method-noise of the guide image bF as follows

R ¼ Fn � bF ¼ Fn � /ðFnÞ: ð6Þ
Many recent work [27–30,46,47] has attempted to exploit the

residual information from method-noise to further improve the
denoising results. Among them, back projection is a simple yet
effective way to exploit the residual information [28,29]. The basic

idea of back projection is to create a new noisy image eFn by adding
method-noise back to the denoised image, i.e.

eFn ¼ /ðFnÞ þ d � ðFn � /ðFnÞÞ; ð7Þ
where d 2 ð0;1Þ is a projection factor. Note that when

d! 0; eFn ¼ /ðFnÞ ¼ bF; when d! 1; eFn ¼ Fn.
Note that adding method-noise directly back to the denoised

image can not always ensure an improvement, since method-
noise contains much noise. As illustrated in Fig. 2(b), it can
observed that most regions in method-noise behave like noise.
(c) (d)
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method-noise. (c): Pearson’s correlation coefficient between denoised image and its
of the Pearson’s correlation coefficient test (white: reject independence hypothesis,
, the reader is referred to the web version of this article.)



Fig. 3. The relationship between the central pixel, the target block, the adjacent
block and the local searching window.
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To weaken the effect of noise, we propose a new back projection
via Pearson-test. To be specific, only the counterparts that have sig-
nificant correlations with the guide image are added to the guide
image, i.e.,eFn ¼ /ðFnÞ þ d � R �W ¼ /ðFnÞ þ d � ðFn � /ðFnÞÞ �W; ð8Þ
where � represents element-wise multiplication of two matrices;W
is a binary mask matrix obtained by Pearson-test.

The subsequent problem is to obtain the mask matrix W. Given

L pixel-pairs (samples) ðp; qÞ extracted from the guide image bF and
the corresponding method-noise R, the biased correlation coeffi-
cient is defined by

r ¼ spq
spsq

; ð9Þ

where sp and sq are the pixel standard deviation of, respectively, p
and q, and spq is the sample covariance of p and q. The criterion
we use is based on the value

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 2
1� r2

r
; ð10Þ

where the criterion t follows a Student-t distribution with L� 2
degrees of freedom. The main merit of this test is that the joint
distribution does not need to be calculated. As such, validity is
achieved with smaller sample sizes.

As an example, we perform the Pearson-test between the
denoised image and its method-noise using a sliding window of
size 7� 7. Fig. 2(c) shows the correlation coefficient between the
denoised image and its method-noise, from which we can see that
the denoised image and its method-noise are highly correlative in
regions highlighted in yellow. In other words, method-noise con-
tains the image structures of the original image. Fig. 2(d) shows
the final result of Pearson-test, from which we can see that
Pearson-test can detect the useful information from method-noise.

4.2.1. Noise estimation
As shown in [27,30], adding the method-noise directly to the

guide image bF as in (8) inevitably introduces additional noise.

Thus, it is necessary to point out that the noise variance r2
r of eFn

needs to be updated. The guide image eFn can be denoted aseFn ¼ Fþ er , where F is the clean image, and er is the residual in
the guide image. Here we estimate rr based on the difference

between the guide image eFn and the noisy image Fn:

D ¼ Fn � eFn ¼ ðFþ eÞ � ðFþ erÞ ¼ e� er: ð11Þ
Then we have

E½D2� ¼ E½e2� þ E½e2
r � � 2E½e � er � ð12Þ

¼ r2 þ r2
r � 2E½e � er �;
where r is the standard deviation of noise, and Eð�Þ is the expecta-
tion operator.

In practice, er can be roughly regarded as the smoothed version
of noise e, which mainly contains the low frequency component of
noise, and thus D has the main high frequency component of e.
Then we have E½e � er � ¼ E½ðDþ erÞ � er � ¼ E½D � er� þ E½e2

r �. As shown
in [20], E½D � er �was much smaller than E½e2

r �, and thus E½D � er� can
be neglected, which leads to E½e � er � � E½e2

r � ¼ r2
r . Therefore, (12)

can be further formulated as

E½D2� ¼ r2 þ r2
r � 2E½e � er� � r2 þ r2

r � 2r2
r ¼ r2 � r2

r : ð13Þ
In practice, we can approximate the residual noise r2

r as

rr ¼ cr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � E½D2�

q
; ð14Þ

where cr 2 ð0;1Þ is a scaling factor determined empirically. In
experiments, we have found that setting cr around 0.55 can lead
to satisfying denoising results for most of the test images.

4.3. The second stage based on guided principal component analysis

4.3.1. Patch grouping in the modified guide image
Given a guide image, the next step is to collect similar patches

for PCA transform estimation. Grouping similar patches has differ-
ent ways, such as block matching and K-means clustering. We
adopt block matching for patch grouping due to its relative sim-
plicity and efficiency.

Let yc 2 Rm�1ðm ¼ k2Þ denote the central block of size k� k. For

convenience, yi; i ¼ ð1;2; . . . ; ðS� kþ 1Þ2Þ represents the candidate
adjacent block of the same size k� k in the S� S searching win-
dow. The relationship between the central pixel, the target block,
the adjacent block and the local searching window is shown in
Fig. 3.

Since the observed image is noisy, we define

y ¼ xþ n

as the noisy vector of x, where x ¼ ½x1; . . . ; xm�Tand n ¼ ½n1; . . . ;nm�T
represent the clean and noise counterpart, respectively.

In the S� S searching window of eFn, there are ðS� kþ 1Þ2 pos-
sible training blocks. The block matching is used to construct the
patch group based on the similarity metric between the adjacent
block and the target block, where the similarity metric can be com-
puted using the Euclidean distance between the central block yc

and the adjacent block yi as follows:

di ¼ 1
m

Xm
j¼1
jycj � yijj2 < T þ 2r2: ð15Þ

By presetting a proper threshold T, and then we can select yi as a
sample vector, if di is smaller than the preset threshold. Following
the practice in [20], we select n ðn � 5 mÞ sample vectors in
implementations.

Suppose we select n sample vectors including the central vector
yc. Then the training dataset matrix Y is formed by

Y ¼ ½yc; y1; . . . ; yn�1� ¼

yc1 y11 . . . yn�11

yc2 y12 . . . yn�12

..

. ..
. ..

. ..
.

ycm y1m . . . yn�1m

2
666664

3
777775 ¼

Y1

Y2

..

.

Ym

2
66664

3
77775 ð16Þ

where Yi 2 R1�n denotes the i-th row vector of Y. Likewise, the clean
counterpart X and the noise counterpart N are, respectively,
expressed as
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X ¼ ½xc;x1; . . . ;xn�1� ¼

X1

X2

..

.

Xm

2
66664

3
77775; N ¼ ½nc;n1; . . . ;nn�1� ¼

N1

N2

..

.

Nm

2
66664

3
77775;

ð17Þ

where Xi and Ni denote the i-th row vectors of X and N, respectively.
4.3.2. PCA-based denoising
After obtaining the sample matrix Y 2 Rm�n, the next step is to

perform PCA transform to decorrelate the dataset Y and remove
the noise in the PCA domain. The PCA-based denoising procedure
mainly consists of four steps as follows.
Fig. 4. All experimental test images, which presen

Table 1
PSNR (dB) results of the proposed method on various images with different patch sizes an

Barbara

r 3� 3 5� 5 7� 7 9�
r ¼ 10 34.79 34.98 35.05 35.0
r ¼ 30 29.64 29.94 30.05 30.0
r ¼ 50 26.91 27.30 27.50 27.4
r ¼ 100 23.23 23.75 23.98 23.9

Pepper

r 3� 3 5� 5 7� 7 9�
r ¼ 10 34.72 34.76 34.74 24.7
r ¼ 30 29.40 29.44 29.50 29.3
r ¼ 50 26.79 26.93 27.02 26.9
r ¼ 100 22.96 23.30 23.54 23.3

δ
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R
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Fig. 5. PSNR results on various images (r ¼ 30) as a function of (a) varying d with
4.3.3. Centralize the training dataset Y
The mean value of the row vector Yi of the matrix Y is denoted

by li ¼ ð1=nÞðyci þ
Pn�1

j¼1 y
j
i Þ, and then Yi is centralized by

Yi ¼ Yi � li. Since noise N is zero-mean, and Xi can be centralized
by Xi ¼ Xi � li. Hence the centralized Y and X are described as

Y ¼

Y1

Y2

..

.

Ym

2
66664

3
77775; X ¼

X1

X2

..

.

Xm

2
66664

3
77775: ð18Þ

Thus the centralized sample matrix Y can be formulated as

Y ¼ Xþ N: ð19Þ
t a wide range of edges, texture and details.

d noise levels.

House

9 3� 3 5� 5 7� 7 9� 9

4 36.50 36.70 36.77 36.80
4 31.73 32.00 32.02 32.02
7 28.98 29.44 29.51 29.50
6 24.98 25.71 25.88 25.85

Cameraman

9 3� 3 5� 5 7� 7 9� 9

1 34.26 34.29 34.27 34.25
8 28.59 28.60 28.61 28.59
1 26.15 26.30 26.45 26.29
7 22.53 22.84 23.12 22.96

c
r
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(b)

patch size 7� 7 and cr ¼ 0:55, (b) varying cr with patch size 7� 7 and d ¼ 0:3.



Table 2
Denoising results (PSNR and MSSIM) of various methods on natural images contaminated with r ¼ 10 and 30. The PSNR and MSSIM values with positive gains are highlighted in
bold.

r ¼ 10

Image BF- BM3D- LPG- SAIST- DDF- PCLR- PGPD- DNN-
GPCA GPCA GPCA GPCA GPCA GPCA GPCA GPCA

Lena 34.12(+0.96) 36.13(+0.20) 35.63(�0.09) 35.91(+0.03) 36.01 (+0.20) 35.99(+0.04) 35.91(+0.13) 36.13(�0.01)
.9598(+.0072) .9707(+.0017) .9655(�.0017) .9684(�.0001) .9701(+.0008) .9697(+.0013) .9690(+.0031) .9708(+.0002)

Barbara 32.47(+1.33) 35.29(+0.31) 34.88(�0.14) 35.28(+0.09) 35.05(+0.41) 35.16(+0.08) 34.98(+0.23) 34.71(+0.17)
.9637(+.0093) .9778(+.0012) .9733(�.0019) .9758(�.0003) .9769(+.0001) .9770(+.0006) .9763(+.0019) .9762(+.0004)

Boat 32.49(+0.88) 34.01(+0.09) 33.39(�0.23) 33.88(�0.01) 33.89(+0.18) 34.04(+0.01) 33.79(+0.06) 34.03(�0.02)
.9473(+.0079) .9673(+.0012) .9591(�.0025) .9656(�.0004) .9667(+.0006) .9674(+.0003) .9661(+.0019) .9687(�.0001)

Peppers 33.37(+0.92) 34.89(+0.21) 33.83(�0.23) 34.78(�0.01) 34.74(+0.19) 34.83(�0.05) 34.50(+0) 34.88(�0.13)
.9154(+.0247) .9283(�.0014) .9189(�.0027) .9261(�.0018) .9250(+.0015) .9272(�.0010) .9241(+.0011) .9285(�.0018)

Cameraman 33.26(+0.80) 34.47(+0.29) 33.43(�0.17) 34.28(+0.05) 34.28(+0.32) 34.36(+0.02) 34.09(+0.09) 34.54(�0.02)
.9076(+.0400) .9329(+.0035) .9197(�.0044) .9316 (�.0018) .9318(+.0035) .9325(+.0002) .9289(+.0050) .9351(�.0009)

House 34.34(+0.87) 36.89(+0.18) 35.96 (�0.26) 36.57(+0.02) 36.77(+0.34) 36.75(+0.05) 36.59(+0.16) 36.56(+0.12)
.8931(+.0249) .9234(+.0007) .9164(+.0034) .9134(�.0033) .9235(+.0019) .9206(+.0005) .9157(+.0045) .9122(+.0023)

Fingerprint 30.28(+1.19) 32.86(+0.40) 32.15(�0.47) 32.70(+0.02) 32.41(+0.58) 32.65(+0.01) 32.57(�0.01) 32.51(�0.10)
.9849(+.0011) .9909(+.0006) .9881(�.0021) .9905(�.0001) .9903(+.0001) .9907(+.0001) .9905(+.0001) .9906(+0)

Couple 32.41(+1.04) 34.17(+0.13) 33.30 (�0.26) 33.90 (�0.01) 33.96(+0.12) 34.07(�0.02) 33.96(+0) 34.23(�0.04)
.9538(+.0063) .9679(+.0006) .9562 (�.0048) .9632 (�.0005) .9661(+.0007) .9669(+.0002) .9665(+.0006) .9686(�.0001)

Hill 32.50(+0.85) 33.63(+0.01) 33.14 (�0.20) 33.65(+0.01) 33.59(+0.05) 33.67(�0.03) 33.54(+0.02) 33.79(�0.04)
.9360(+.0061) .9576(+.0002) .9463 (�.0052) .9555 (�.0032) .9571(+.0005) .9581(+.0001) .9563(+.0008) .9596(�.0003)

Man 32.85(+0.98) 34.13(+0.15) 33.39 (�0.24) 34.05 (�0.03) 34.10(+0.12) 34.13(�0.02) 33.93(+0.01) 34.31(�0.08)
.9473(+.0081) .9647(+.0011) .9547 (�.0040) .9618 (�.0012) .9669(+.0031) .9645(�.0001) .9635(+.0011) .9660(�.0004)

Montage 35.88(+1.62) 37.44(+0.09) 36.38 (�0.15) 37.49(+0.05) 37.82(+0.39) 37.56(+0.18) 37.14(+0.39) 37.60(+0.06)
.9541(+.0408) .9637 (�.0021) .9658(+.0022) .9688(+.0007) .9692(+.0034) .9687(+.0020) .9657(+.0085) .9699(+.0012)

Average 33.08(+1.04) 34.90(+0.19) 34.13 (�0.22) 34.77(+0.02) 34.78(+0.27) 34.83(+0.02) 34.63(+0.09) 34.40(+0.01)
.9421(+.0160) .9587(+.0007) .9513 (�.0022) .9564 (�.0008) .9585(+.0015) .9585(+.0003) .9566(+.0026) .9587(+0)

r ¼ 30
Lena 28.94(+1.04) 31.44(+0.18) 30.80(+0.13) 31.39(+0.07) 31.50(+0.15) 31.48(+0.14) 31.40(+0.12) 31.70(+0.12)

.8752(+.0262) .9188(+.0069) .9056 (�.0008) .9167(+.0010) .9214(+.0023) .9201(+.0038) .9170(+.0046) .9242(+.0024)
Barbara 25.67(+0.78) 29.88(+0.07) 29.29(+0.19) 30.14(+0.06) 30.05(+0.21) 29.80(+0.20) 29.55(+0.20) 29.24(+0.40)

.8506(+.0245) .9303(+.0032) .9160(+.0013) .9310(+.0006) .9322(+.0027) .9284(+.0034) .9237(+.0043) .9220(+.0055)
Boat 26.60(+0.65) 29.29(+0.17) 28.37(+0.10) 28.92 (+0) 29.04(+0.11) 29.18(+0.01) 28.98(+0.01) 29.38(+0.05)

.8243(+.0208) .8933(+.0063) .8532 (�.0064) .8719 (�.0008) .8833(+.0019) .8878(+.0003) .8800(+.0006) .8939(�.0002)
Peppers 26.45(+0.63) 29.45(+0.17) 28.61(+0.15) 29.34(+0.01) 29.50(+0.11) 29.54(�0.03) 29.34(+0.02) 29.82(�0.03)

.6898(+.0139) .8427 (�.0096) .8395(+.0045) .8545(+.0016) .8545(+.0093) .8577(+.0009) .8572(+.0043) .8634(+.0016)
Cameraman 26.70(+1.07) 28.83(+0.19) 27.91(+0.10) 28.31(+0.01) 28.61(+0.09) 28.68(�0.02) 28.38(�0.02) 29.08(�0.05)

.7140(+.0561) .8424(+.0122) .8177(+.0028) .8222 (�.0012) .8304(+.0111) .8366(+.0018) .8240(+.0027) .8505(�.0007)
House 28.94(+1.64) 32.35(+0.26) 31.41(+0.22) 32.24(+0.06) 32.02(+0.25) 32.23(+0.10) 32.20(+0.04) 32.39(+0.20)

.7960(+.1071) .8502(+.0009) .8415(+.0026) .8508(+.0009) .8480(+.0094) .8513(+.0030) .8494(+.0039) .8528(+.0042)
Fingerprint 23.49(+1.30) 27.05(+0.22) 26.16 (�0.11) 26.93 (�0.02) 26.54(+0.11) 26.90(+0) 26.82(+0.03) 26.66(+0.08)

.8794(+.0273) .9528(+.0032) .9254 (�.0086) .9486(+.0002) .9429 (�.0004) .9493(+.0001) .9467(+.0010) .9490(+.0004)
Couple 25.97(+0.42) 29.08(+0.21) 28.07(+0.15) 28.68(+0.01) 28.74(+0.12) 28.89(+0) 28.75(�0.01) 29.18(+0.01)

.8185(+.0183) .8967(+.0056) .8556 (�.0034) .8757(+.0004) .8827(+.0019) .8873(+.0002) .8832(�.0001) .8947(�.0006)
Hill 27.32(+0.37) 29.31(+0.16) 28.50(+0.10) 29.01 (�0.03) 29.05(+0.13) 29.10(+0.02) 29.03(�0.01) 29.27(+0.02)

.8189(+.0165) .8695(+.0052) .8297 (�.0051) .8505 (�.0016) .8532(+.0019) .8596(�.0004) .8573(�.0008) .8658(�.0018)
Man 27.05(+0.42) 29.03(+0.17) 28.28(+0.07) 28.72 (�0.03) 28.84(+0.11) 28.94(+0) 28.77(�0.03) 29.20(�0.04)

.8289(+.0151) .8809(+.0058) .8420 (�.0080) .8588 (�.0015) .8677(+.0014) .8729(�.0002) .8670(�.0008) .8798(�.0021)
Montage 28.51(+1.15) 31.71(+0.34) 29.91(+0.14) 31.07(+0.12) 31.70(+0.29) 31.29(+0.09) 30.92(+0.25) 31.79(+0.05)

.7948(+.0740) .9176(+.0100) .9100(+.0116) .9221(+.0046) .9180(+.0132) .9210(+.0077) .9154(+.0136) .9275(+.0059)
Average 26.87(+0.86) 29.76(+0.19) 28.84(+0.11) 29.52(+0.03) 29.59(+0.15) 29.63(+0.04) 29.46(+0.05) 29.79(+0.07)

.8082(+.0363) .8905(+.0045) .8669 (�.0009) .8821(+.0004) .8849(+.0049) .8884(+.0019) .8837(+.0030) .8931(+.0013)
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4.3.4. Diagonalize the covariance matrix of Y
For ease of presentation, we denote the covariance matrix of

X;Y and N by CX;CY and CN, respectively. As Section 3 describes,
the PCA transformation matrix PX can be obtained by diagonalizing

the covariance matrix CX. Since the dataset X is unknown, we can-
not directly compute CX. However, it can be proved that the PCA
transformation matrix PX associated with CX is the same as the
PCA transformation matrix associated with CY (shown in (23)).
Then the PCA transformation matrix PX can be estimated by com-

puting the covariance matrix CY of Y. With linear model (19), CY

can be expressed as2
2 Since dataset X is uncorrelated with noise N.
CY ¼ 1=nðXþ NÞðXþ NÞT

� 1=n X XT þ N NT
� �

¼ CX þ CN; ð20Þ

where CX ¼ ð1=nÞX XT and CN ¼ ð1=nÞNNT .
Since ni and n j is uncorrelated (when i– j), we can see that

CN 2 Rm�m is a diagonal matrix, which has all the diagonal compo-
nents being r2. According to PCA transformation, CX can be decom-
posed as

CX ¼ UXKXU
T
X
; ð21Þ

whereUX is them�m orthogonal eigenvector matrix, i.e.UXU
T
X
¼ I,

where I is an m�m identity matrix; KX ¼ diagfk1; k2; . . . ; kmg is the
diagonal eigenvalue matrix with k1 P k2 P � � �P km. Then CN can
be reformulated as
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CN ¼ r2I ¼ UXU
T
X
ðr2IÞ ¼ UXðr2IÞUT

X
¼ UXðCNÞUT

X
: ð22Þ

Based on (20)–(22), we have

CY � CX þ CN

¼ UXKXU
T
X
þUXðr2IÞUT

X

¼ UXðKX þ r2IÞUT
X
; ð23Þ

which implies that CY and CX contain the same orthogonal eigen-
vector matrix UX. Since CX is not available, we can directly estimate
UX by decomposing CY. According to Section 3, the orthogonal PCA

transformation matrix of X is obtained by setting

PX ¼ UT
X
: ð24Þ

Using PX, the sample matrix Y can be decorrelated by the PCA
transform

ZN ¼ PXY ¼ PXXþ PXN

¼ Zþ Nz; ð25Þ

where Z ¼ PXX is the decorrelated dataset for X, and Nz ¼ PXNis the

transformed noise dataset for N. Since Z and Nz are uncorrelated,
the covariance matrix of Y can be computed by

CZN
¼ ð1=nÞ ZNZT

N

¼ ð1=nÞðPXYÞðPXYÞ
T

¼ PX ð1=nÞY YT
� �

PT
X � PXðCX þ CNÞPT

X

¼ CZ þ CNz ; ð26Þ

where CZ ¼ PXCXP
T
Xand CNz ¼ PXCNP

T
X. Note that CZ and CNZ are the

covariance matrix of decorrelated dataset Z and N, respectively.
Based on (23), CZ and CNZ are diagonal matrices.

4.3.5. Denoising in the PCA transform domain
After PCA transform for the sample matrix Y, noise reduction is

then converted to the PCA transform domain ZN. In general, most
energy of the original signals will concentrate on the several most
important components, while the energy of noise will spread much
more evenly. Thus, the noise can be removed by using the linear
minimum mean square-error estimation (LMMSE) estimator or
hard-thresholding shrinkage in ZN. Here we adopt LMMSE estima-
tor due to its simplicity and efficiency.

Let Zi
n denote the i-th row vector of ZN. With LMMSE, the

denoised result of Zi
n can be formulated as

bZi
n ¼ cWi � Zi

n; ð27Þ

where the shrinkage operator cWi ¼ C
Z
ði;iÞ

C
Z
ði;iÞþCNz ði;iÞ

. In practice, CZði; iÞ is
much smaller than CNz ði; iÞ in flat zones, so thatWi is near 0. In other
words, most of noise will be removed by LMMSE. Since CZði; iÞ is not
available, based on (26), CZði; iÞ can be estimated by

CZði; iÞ ¼ CZN
ði; iÞ � CNz ði; iÞ: ð28Þ
3 http://www.cs.tut.fi/foi/GCF-BM3D/index.html#ref_software.
4.3.6. Inverse PCA transform and aggregation

Let bZN denote the shrunk transformed matrix, and bY denote the

denoised result of Y. Then bY can be obtained by inversing the PCA
transform as

bY ¼ P�1X
bZN ¼ PT

X
bZN: ð29Þ

Adding the mean value li (i ¼ 1; . . . ;m) to the i-th row of bY pro-

duces the denoised result of Y, i.e., bY ¼ ½ŷc; ŷ1; . . . ; ŷn�1�. The final
denoised result of the central block yc is the weighted average of
most similar l patches, i.e.

ŷc
f ¼ acŷc þ

Xl

i¼1
aiŷi; s:t: ac þ

Xl

i¼1
ai ¼ 1; ð30Þ

where we set l ¼ 3 empirically; ac and ai control the weights, which
can be obtained by any other kernel function (e.g., Gaussian kernel),
or by linear regression. In implementation, we use the average
weight due to its simplicity, i.e., ac ¼ a1 ¼ � � � ¼ al. Applying such
procedures to each pixel, and then the whole image can be
denoised.

In summary, the complete procedure of the proposed frame-
work is sketched in the following Algorithm 1.

Algorithm 1. The proposed denoising framework

Input: Noisy image Fn with noise variance r2

Output: Denoised image bFn
1:
 / Choose a certain denoising filter, such as BM3D;

2:
 bF  Use / to obtain a guide image via (5);

3:
 R Obtain method-noise using (6);

4:
 eFn  Generate a new guide image using the back

projection based on Pearson-test by (8);

5:
 rr  Estimate the noise level of eFn using (14);

6:
 foreach pixel in eFndo

7:
 Y Obtain the training sample by selecting similar

patches from eFn via (15) and then centralize it;

8:
 PX  Estimate the PCA transformation matrix via (24);

9:
 bZN  Shrink the PCA transformed coefficients using

LMMSE via (27);

10:
 bY  Obtain the denoised result of Y by inversing the

PCA transform via (29);

11:
 ŷcf  Obtain the final denoised result of the target

block via (30).

12:
 end for

13:
 bFn  Return the denoised image by weighted average.
5. Experiments

5.1. Parameter setup

To test the performance of the proposed framework compre-
hensively, all the experiments are performed on multiple test
images from the standard image databases,3 which are commonly
used to evaluate the state-of-the-art denoising methods and are
shown in Fig. 4. Each image is contaminated with AWGN at
r 2 ½10;30;50;100�, ranging from low to high noise levels, and the
intensity value for each pixel of the images ranges from 0 to 255.

Our GPCA framework can be seen as a post-processing tech-
nique for other denoising algorithms. In experiments, 8 representa-
tive denoising algorithms are used to verify the effectiveness of our
framework, including spatial domain methods: BF [11], LPG-PCA
[20] and SAIST [21], transform domain methods: DDF [19] and
BM3D [18], and learning-based methods: PCLR [23], PGPD [24]
and DNN [48]. All the parameters are consistent with the default
parameters settings suggested by the respective authors. In our
experiments, we empirically set S ¼ 41; T ¼ 25; k ¼ 7; d ¼ 0:3 and

http://www.cs.tut.fi/foi/GCF-BM3D/index.html#ref_software


Table 3
Denoising results (PSNR and MSSIM) of various methods on natural images contaminated with r ¼ 50 and 100. The PSNR and MSSIM values with positive gains are highlighted in
bold.

r ¼ 50

Image BF- BM3D- LPG- SAIST- DDF- PCLR- PGPD- DNN-
GPCA GPCA GPCA GPCA GPCA GPCA GPCA GPCA

Lena 27.00(+0.95) 29.30(+0.25) 28.41(+0.21) 29.11(+0.04) 29.20(+0.30) 29.28(+0.20) 29.20(+0.08) 29.56(+0.18)
.8144(+.0419) .8780(+.0112) .8559(+.0026) .8722(+.0006) .8774(+.0049) .8779(+.0075) .8725(+.0049) .8832(+.0035)

Barbara 23.36(+0.28) 27.42(+0.20) 26.45(+0.24) 27.53(+0.01) 27.50(+0.19) 27.28(+0.18) 27.02(+0.15) 26.62(+0.46)
.7468(+.0136) .8804(+.0083) .8490(+.0026) .8768 (�.0006) .8821(+.0049) .8820(+.0052) .8674(+.0048) .8638(+.0094)

Boat 24.89(+0.85) 26.93(+0.15) 26.00(+0.15) 26.52 (�0.02) 26.71(+0.16) 26.95(+0.02) 26.72(�0.04) 27.16(+0.01)
.7481(+.0384) .8268(+.0093) .7662 (�.0071) .7863 (�.0006) .8048(+.0033) .8186(+.0002) .8046(�.0026) .8234(�.0027)

Peppers 24.11(+1.17) 27.00(+0.32) 26.04(+0.26) 26.91(+0.02) 27.02(+0.20) 27.13(+0.01) 26.95(+0.05) 27.3(+0.04)
.6829(+.0822) .7996(+.0061) .7843(+.0158) .8036(+.0040) .8019(+.0197) .8072(+.0014) .7981(+.0067) .8116(+.0055)

Cameraman 23.83(+1.52) 26.33(+0.21) 25.71(+0.29) 26.12(+0.02) 26.45(+0.23) 26.53(+0) 26.30(�0.02) 26.92(�0.06)
.6310(+.1482) .7823(+.0069) .7716(+.0204) .7795(+.0049) .7835(+.0232) .7905(+.0022) .7756(+.0005) .7981(�.0025)

House 26.59(+1.41) 30.05(+0.36) 28.90(+0.41) 30.13(+0.04) 29.51(+0.30) 29.96(+0.20) 29.89(+0.05) 30.19(+0.28)
.7488(+.1324) .8215(+.0075) .8039(+.0191) .8259(+.0020) .8143(+.0225) .8200(+.0030) .8115(+.0020) .8200(+.0050)

Fingerprint 21.01(+0.89) 24.39 (�0.14) 23.47 (�0.05) 24.47 (�0.04) 24.12(+0.16) 24.40(+0.03) 24.34(+0) 24.26(+0.17)
.7854(+.0343) .9084(+.0052) .8443 (�.0167) .8936(+.0001) .8837(+.0014) .9001(�.0002) .8926(+.0006) .8982(+.0008)

Couple 24.41(+0.56) 26.63(+0.17) 25.58(+0.20) 26.24 (�0.03) 26.36(+0.17) 26.56(+0.02) 26.38(�0.02) 26.87(+0.01)
.7229(+.0288) .8245(+.0085) .7604 (�.0014) .7941 (�.0006) .8033(+.0042) .8145(�.0002) .8040(�.0012) .8260(�.0028)

Hill 25.87(+0.35) 27.31(+0.12) 26.39(+0.12) 26.97 (�0.04) 27.05(+0.15) 27.20(+0.06) 27.10(�0.02) 27.40(+0.03)
.7421(+.0186) .7971(+.0060) .7372 (�.0057) .7678 (�.0013) .7754(+.0045) .7870(�.0004) .7797(�.0016) .7943(�.0025)

Man 25.44(+0.54) 26.93(+0.12) 26.20(+0.16) 26.63 (�0.04) 26.81(+0.17) 26.92(+0.01) 26.77(�0.04) 27.16(�0.01)
.7540(+.0224) .8102(+.0062) .7642 (�.0037) .7806 (�.0031) .7922(+.0043) .8016(+.0001) .7941(�.0019) .8073(�.0027)

Montage 24.44(+1.28) 28.29(+0.39) 26.90(+0.36) 27.99(+0.16) 28.50(+0.27) 28.21(+0.09) 27.98(+0.15) 28.78(�0.06)
.6847(+.1152) .8765(+.0192) .8640(+.0273) .8819(+.0105) .8723(+.0260) .8806(+.0091) .8692(+.0019) .8871(+.0082)

Average 24.63(+0.89) 27.32(+0.19) 26.36(+0.21) 27.14(+0.01) 27.20(+0.21) 27.31(+0.07) 27.15(+0.03) 27.47(+0.09)
.7328(+.0615) .8368(+.0085) .8001(+.0048) .8238(+.0015) .8264(+.0108) .8345(+.0025) .8245(+.0013) .8375(+.0017)

r ¼ 100
Lena 23.19(+0.55) 26.36(+0.41) 25.23(+0.39) 26.05(+0.05) 26.01(+0.30) 26.25(+0.18) 26.09(+0.05) 26.46(+0.14)

.6917(+.0553) .7950(+.0266) .7656(+.0215) .7913 (�.0005) .7865(+.0130) .7918(+.0104) .7782(+.0061) .7926(+.0024)
Barbara 20.79(+0.26) 23.90(+0.28) 22.85(+0.20) 24.18(+0.03) 23.98(+0.11) 23.85(+0.14) 23.60(+0.05) 22.97(+0.29)

.6129(+.0256) .7675(+.0294) .7095(+.0137) .7689 (�.0012) .7644(+.0086) .7589(+.0072) .7394(+.0048) .7220(+.0110)
Boat 21.93(+0.45) 24.16(+0.19) 23.21(+0.20) 23.82 (�0.02) 23.86(+0.22) 24.10(+0.03) 23.91(�0.07) 24.23(�0.05)

.6035(+.0411) .7010(+.0108) .6432(+.0082) .6719 (�.0025) .6782(+.0100) .6910(�.0017) .6767(�.0028) .6935(�.0076)
Peppers 20.81(+0.70) 23.81(+0.42) 22.16(+0.28) 23.60(+0.10) 23.54(+0.29) 23.79(+0.03) 23.55(+0.03) 23.92(+0.10)

.6278(+.1024) .7149(+.0321) .6868(+.0583) .7160(+.0136) .6999(+.0326) .7182(+.0003) .6901(+.0117) .7106(+.0077)
Cameraman 19.97(+0.91) 23.33(+0.26) 22.59(+0.47) 23.09(+0.06) 23.12(+0.37) 23.41(+0.02) 23.08(�0.06) 23.59(�0.13)

.5484(+.1688) .7159(+.0290) .6935(+.0906) .6987(+.0057) .6951(+.0456) .7085(�.0001) .6592(�.0167) .6887(�.0279)
House 22.94(+0.80) 26.36(+0.49) 25.11(+0.61) 26.75(+0.06) 25.88(+0.48) 26.40(+0.31) 26.27(+0.08) 26.73(+0.26)

.6692(+.0990) .7540(+.0318) .7307(+.0811) .7745(+.0150) .7369(+.0400) .7512(+.0032) .7074(�.0116) .7326(�.0045)
Fingerprint 18.61(+0.64) 21.78(+0.17) 20.14(+0.01) 21.61 (�0.04) 21.19(+0.20) 21.38(+0.06) 21.40(�0.02) 21.22(+0.47)

.5711(+.0414) .7945(+.0034) .6533 (�.0209) .7705 (�.0046) .7456(+.0046) .7713(�.0029) .7631(�.0050) .7577(+.0032)
Couple 21.86(+0.38) 23.69(+0.18) 22.62(+0.13) 23.20 (�0.03) 23.38(+0.18) 23.65(�0.01) 23.46(�0.09) 23.72(�0.08)

.5814(+.0320) .6702(+.0087) .5901 (�.0013) .6270 (�.0060) .6439(+.0076) .6600(�.0052) .6462(�.0082) .6621(�.0109)
Hill 22.53(+0.30) 24.79(+0.21) 23.81(+0.14) 24.42(�0.02) 24.54(+0.19) 24.82(+0) 24.59(�0.04) 24.84(�0.04)

.6151(+.0236) .6626(+.0082) .5918(�.0045) .6300(�.0041) .6383(+.0051) .6554(�.0052) .6440(�.0030) .6578(�.0066)
Man 22.26(+0.41) 24.59(+0.37) 23.49(+0.23) 23.95(+0.01) 24.20(+0.22) 24.41(+0.02) 24.20(�0.05) 24.50(�0.04)

.6257(+.0329) .6908(+.0128) .6373 (�.0068) .6614 (�.0023) .6747(+.0101) .6844(+.0001) .6734(�.0002) .6874(�.0036)
Montage 19.52(+0.98) 24.33(+0.45) 22.82(+0.45) 24.01(+0.13) 23.86(+0.28) 24.20(+0.07) 23.97(+0.05) 24.72(+0.01)

.5423(+.1588) .7938(+.0502) .7733(+.0830) .8012(+.0213) .7778(+.0472) .7986(+.0091) .7538(+.0142) .7965(+.0031)
Average 21.31(+0.58) 24.28(+0.31) 23.09(+0.28) 24.06(+0.03) 23.96(+0.27) 24.20(+0.07) 24.10(+0) 24.26(+0.08)

.6081(+.0710) .7327(+.0220) .6796(+.0306) .7192(+.0031) .7128(+.0204) .7263(+.0014) .7029(�.0009) .7183(�.0031)

T. Dai et al. / J. Vis. Commun. Image R. 48 (2017) 340–352 347
cr ¼ 0:55 for various noise levels. The influence of the main param-
eters will be discussed in the following part.

5.2. Evaluation criteria

Two objective criteria, namely Peak Signal-to-Noise Ration
(PSNR) and Structural Similarity Index (SSIM) [49], are used to
evaluate the denoising results. Between them, PSNR is one of the
most widely used measures of image quality. Given two images
X and Y, PSNR can be computed as follows:

PSNRðX;YÞ ¼ 10log10
Q2

MSE
; ð31Þ

where MSEðX;YÞ ¼ 1=N
PN

n¼1ðxn � ynÞ2, where N is the number of
pixels in a image; Q is the dynamic range of allowable image pixel
intensities. For an 8-bit gray-level image, Q ¼ 255.

As a complementary metric to PSNR, SSIM is a metric conceived
to simulate the response of the human visual system (HVS), which
can better reflect the structure similarity between the reference
image and the target image. Given two patches xp and yp taken
from the same location of two images X and Y, the structural sim-
ilarity can be calculated as follows:

SSIMðxp; ypÞ ¼
ð2lxplyp

þ C1Þð2rxpyp þ C2Þ
ðl2

xp þ l2
yp
þ C1Þðr2

xp þ r2
yp
þ C2Þ ; ð32Þ

where lxp is the sample mean, rxp is the sample standard deviation,

and rxpyp is the standard covariance; C1 and C2 are two constants.
SSIM is bounded: �1 < SSIMðxp; ypÞ 6 1, achieving maximum value
SSIMðxp; ypÞ ¼ 1 if and only if xp ¼ yp. In practice, mean SSIM
(MSSIM) is usually used to evaluate the overall image quality:

MSSIMðx; yÞ ¼ 1=M
XM
j¼1

SSIMðxj; yjÞ; ð33Þ

where xj and yj are the image contents at the j-th local window; and
M is the number of local windows in the image.



(a) BM3D (29.05 dB) (b) LPG-PCA (28.20 dB) (c) SAIST (29.07 dB) (d) DDF (28.90 dB)

(e) BM3D-GPCA(29.30 dB)

(+0.25 dB)

(f) LPG-GPCA(28.41 dB)

(+0.21 dB)

(g) SAIST-GPCA(29.11 dB)

(+0.04 dB)

(h) DDF-GPCA(29.20 dB)

(+0.30 dB)

(i) BF (26.05 dB) (j) PCLR (29.08) dB (k) PGPD (29.12 dB) (l) DNN (29.38 dB)

(m) BF-GPCA (27.00 dB)

(+0.95 dB)

(n) PCLR-GPCA (29.28 dB)

(+0.20 dB)

(o) PGPD-GPCA (29.20 dB)

(+0.08 dB)

(p) DNN-GPCA (29.56 dB)

(+0.18 dB)

Fig. 6. The denoised results for Lena at r ¼ 50. The first and third rows show the denoised images by different denoising methods, while the second and fourth rows show the
corresponding denoised images by the proposed framework.
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5.3. Influence of parameters

In our denoising framework, there are three main tuning
parameters: block size k, projection factor d and scaling factor cr .
The patch size k plays an important role in our denoising frame-
work. On one hand, a too large block size can capture the varying
local geometry and also result in a high computational cost. On
the other hand, a too small block size can deteriorate the denoising
performance. In order to better illustrate the effects of the param-
eters, we use the results of DDF-GPCA to analyze specifically.

To consider the influence of the block size, we set
d ¼ 0:3; cr ¼ 0:55 and run our method on four typical images,
which present a wide range of edges, textures and details, with dif-
ferent block sizes and noise levels. The PSNR results are reported in



Fig. 7. The denoised results for Cameraman at r ¼ 50. The first and third rows show the denoised images by different denoising methods, while the second and fourth rows
show the corresponding denoised images by the proposed framework.
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Table 1. It can be seen that choosing the block size 7� 7 in our
tests is a reasonable tradeoff between accuracy and speed.

The projection factor d determines the amount of the residual
image added to the initial denoised image. To analyze the effect
of d, we perform our framework at 0.1 intervals at a range from
0.1 to 0.9. Fig. 5(a) displays the denoising performance of our
framework, which is applied to the four typical images (r ¼ 30)
as a function of the parameter d. As can be observed in Fig. 5(a),
the best results are achieved when d ranges from 0:1 to 0:3. In
implementation, we set d ¼ 0:2. Similar curves for cr are shown
in Fig. 5(b). The best results are obtained when cr is around 0.55
for most cases.
5.4. Denoising performance on Gaussian noise

5.4.1. Quantitative metrics
In order to quantitatively evaluate the performance of the pro-

posed framework, we have extended it to 8 representative denois-
ing methods. The source codes of these methods can be
downloaded from the websites of the respective authors, and all
of these methods are performed with the default parameters sug-
gested by the respective authors.

We quantify the denoising performance on eleven test images
with various noise levels in terms of both PSNR and MSSIM. All
the results are reported in Tables 2,3, from which we can see that



(a) BM3D (29.69 dB) (b) LPG-PCA (28.49 dB) (c) SAIST (30.09 dB) (d) DDF (29.21 dB)

(e) BM3D-GPCA (30.05 dB)

(+0.36 dB)

(f) LPG-GPCA (28.90 dB)

(+0.41 dB)

(g) SAIST-GPCA (30.13 dB)

(+0.04 dB)

(h) DDF-GPCA (29.51 dB)

(+0.30 dB)

(i) BF (25.18 dB) (j) PCLR (29.76 dB) (k) PGPD (29.84 dB) (l) DNN (29.91 dB)

(m) BF-GPCA (26.59 dB)

(+1.41 dB)

(n) PCLR-GPCA (29.96 dB)

(+0.20 dB)

(o) PGPD-GPCA (29.89 dB)

(+0.05 dB)

(p) DNN-GPCA (30.19 dB)

(+0.28 dB)

Fig. 8. The denoised results for House at r ¼ 50. The first and third rows show the denoised images by different denoising methods, while the second and fourth rows show
the corresponding denoised images by the proposed framework.
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the proposed framework improves the performance of other meth-
ods in most cases, including the recently developed deep-learning
methods. For example, on average the PSNR gains of BF, BM3D and
DDF are at least 0.58 dB, 0.19 dB, and 0.15 dB, respectively. For
each individual image, it can be observed that our framework
works better on images with more smooth regions and repeated
patterns such as Lena, Barbara, Peppers and Montage. This is
because such images often contain more prominent structures that
can be utilized in method-noise. Note that our framework deterio-
rates the performance of some methods (e.g., LPG-PCA, SAIST and
DNN) at r ¼ 10. This is because these methods preserves image
fine structures well at low noise levels, thus resulting in less image
structures to be utilized in method-noise.

5.4.2. Visual quality
To evaluate the visual quality of various methods, we show the

denoised results of some noisy images under r ¼ 50 in Figs. 6–8,
from which we can see that our framework improves the visual
quality of baseline methods. For example, the proposed framework
significantly enhances the edges of the denoised images produced
by BF. Our framework also improves the visual effect of other state-
of-the-art methods (e.g. BM3D and DDF) as shown in Figs. 6–8,



Table 4
The denoised results (PSNR) of different methods on non-Gaussian noise, including speckle noise and impulse noise. The PSNR values with positive gains are highlighted in bold.

Speckle noise Impulse noise
r ¼ 10 4%

Image BF- BM3D- MED- BF- BM3D- MED-
GPCA GPCA GPCA GPCA GPCA GPCA

Lena 26.08(+4.33) 24.53(+4.68) 28.46(+1.85) 19.65(+0.17) 19.69(+0.20) 30.83(-0.12)
Barbara 25.16(+3.49) 23.96(+3.82) 23.36(+1.10) 19.48(+0.15) 19.54(+0.18) 23.83(+0.77)
Boat 25.77(+4.52) 24.08(+4.59) 25.83(+1.23) 19.56(+0.15) 19.70(+0.18) 27.03(-0.03)

Peppers 25.12(+3.69) 23.76(+4.03) 25.92(+1.12) 19.46(+0.16) 19.50(+0.20) 28.19(-0.08)
Cameraman 25.68(+4.31) 24.08(+4.38) 23.38(+1.05) 19.22(+0.14) 19.28(+0.16) 24.16(+0.51)

House 25.61(+4.85) 24.31(+5.25) 27.12(+2.01) 19.85(+0.19) 19.90(+0.21) 30.54(+0.44)
Fingerprint 23.05(+3.15) 22.40(+3.40) 23.59(+0.89) 19.47(+0.14) 19.48(+0.16) 25.67(+0.28)
Couple 25.85(+3.90) 24.24(+4.19) 25.50(+1.07) 19.60(+0.16) 19.75(+0.19) 26.64(+0.06)
Montage 25.69(+3.07) 24.20(+3.20) 21.62(+1.10) 19.09(+0.13) 19.06(+0.15) 21.67(+0.70)
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from which we can see that the artifacts of the denoised images
(e.g., in the eye regions of Lena and window area of House) have
been significantly reduced by our framework.

5.5. Denoising performance on non-Gaussian noise

To test the generality of our denoising framework, we test our
framework on nine natural images contaminated with non-
Gaussian noise, including speckle and impulse noise (salt and pep-
per noise). For each test image, the standard deviation of speckle
noise is 10, and the density of salt-and-pepper noise is 4%. We
choose three methods, i.e., BF, BM3D and Median filter (MED) as
baselines. All the results are reported in Table 4, from which we
can observe that our framework also works well on non-
Gaussian noise, especially for speckle noise. For impulse noise,
our framework only improves other methods to a certain degree.
This is because many pixels have been damaged by the impulse
noise, thus leaving less of the original structures in method-noise
that can be utilized.

5.6. Computational complexity

Our GPCA framework is designed to improve the existing
denoising algorithms, including the state-of-the-art algorithms.
In other words, our framework can be considered as a post-
processing technique for other denoising methods. Therefore, we
only analyze the computational complexity of our framework
except the noise filtering procedure. Then most of the computa-
tional cost relies in patch grouping and PCA-based denoising pro-
cedure. By contrast, the complexity of Pearson-test can be
neglected. To be specific, given the parameters: the size k of the
variable block, the size S of the searching window patch grouping

requires ð2k2 � 1Þ � ðS� kþ 1Þ2 additions, k2 � ðS� kþ 1Þ2 multipli-

cations and ðS� kþ 1Þ2 logic operations. Assume on average n vari-

able blocks are selected, i.e., the dataset Y is of dimension k2 � n.
Then the PCA transformation of the dataset Y requires

k2 � nþ ðn2 � 1Þ � k4 þ ðk2 � 1Þ � k2 � n additions, k4 � ðnþ n2Þ multi-

plications, and an SVD decomposition of an k2 � k2 definite covari-
ance matrix in the PCA transformation.

In practice, our framework is performed on a MATLAB platform
of an Intel Core i5 CPU 2.6 GHz with 8 GB memory. For a 256� 256
grayscale image, we set k ¼ 7 and S ¼ 41, and our MATLAB imple-
mentation requires about 66 s on average, which means that our
GPCA framework improves the performance of other denoising
methods at the cost of reasonably additional computational bur-
den. Besides, the main computational cost of the PCA-based
denoising is the calculation of PCA transform for each patch group
matrix. Since each group matrix could potentially be dealt with
independently in parallel, our framework is appropriate to parallel
processing. Therefore, in fact, our framework can be further sped
up in a parallel implementation.
6. Conclusions

In this paper, we propose a generic image denoising framework
to further improve the performance of existing denoising methods
based on a new back projection and PCA-based denoising. To be
specific, the back projection adopts Pearson-test to detect the use-
ful information in method-noise, thus resulting in a trade-off
between the loss of image details and the residual noise. Similar
patches are then collected to construct patch group for the PCA-
based denoising, which is able to remove the noise while reducing
the artifacts. Experimental results on natural images, contami-
nated with Gaussian and non-Gaussian noise, show that our frame-
work works well on other denoising methods in most cases,
especially at high noise levels. Furthermore, our framework shows
more flexibility, indicating a wide range of potential applications of
our framework.
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