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Abstract

Gaussian Process Regression (GPR) is a powerful
Bayesian method. However, the performance of
GPR can be significantly degraded when the train-
ing data are contaminated by outliers, including
target outliers and input outliers. Although there
are some variants of GPR (e.g., GPR with Student-t
likelihood (GPRT)) aiming to handle outliers, most
of the variants focus on handling the target outliers
while little effort has been done to deal with the
input outliers. In contrast, in this work, we aim to
handle both the target outliers and the input outliers
at the same time. Specifically, we replace the Gaus-
sian noise in GPR with independent Student-t noise
to cope with the target outliers. Moreover, to en-
hance the robustness w.r.t. the input outliers, we use
a Student-t Process prior instead of the common
Gaussian Process prior, leading to Student-t Pro-
cess Regression with Student-t Likelihood (TPRT).
We theoretically show that TPRT is more robust to
both input and target outliers than GPR and GPRT,
and prove that both GPR and GPRT are special
cases of TPRT. Various experiments demonstrate
that TPRT outperforms GPR and its variants on
both synthetic and real datasets.

1 Introduction
Gaussian Process Regression (GPR) is a powerful Bayesian
method with good interpretability, non-parametric flexibil-
ity, and simple hyper-parameter learning [Rasmussen, 2006].
Due to its nice properties, GPR has been successfully applied
to many fields, such as reinforcement learning [Rasmussen
et al., 2003], computer vision [Liu and Vasconcelos, 2015],
spatio-temporal modeling [Senanayake et al., 2016].

In GPR, the basic model is y = f(X) + ε, where y =
{yi}ni=1 is the target vector, X = {xi}ni=1 is the collection
of input vectors, and ε is the noise. The latent function
f is given a Gaussian Process prior and ε is assumed to
be independent and identically distributed (i.i.d.) Gaussian
noise. In practice, as the number of input vectors is finite,
the latent variables f(X) follow a multivariate Gaussian
distribution. Due to the thin-tailed property of the Gaussian

distribution, GPR performs poorly on the data from heavy-
tailed distributions or with outliers. However, real-world
data often exhibit heavy-tailed phenomena [Nair et al., 2013]
and contain outliers [Bendre et al., 1994; Niu et al., 2015;
2016].

In order to handle the outliers, heavy-tailed distribu-
tions (e.g., Laplace distribution, mixtures of Gaussians, and
Student-t distribution) have been introduced into GPR. In
particular, Laplace noise is used in [Kuss, 2006] while mixed
two forms of Gaussian corruption are used in [Naish-Guzman
and Holden, 2008]. In [Neal, 1997; Vanhatalo et al., 2009;
Jylänki et al., 2011], the noise ε is assumed to follow the
Student-t distribution (GPRT). However, all these methods
are only robust to the target outliers, but not robust to the
outliers in the inputs X , since the latent variables f(X) are
still assumed to follow the Gaussian distribution.

Related to the robustness w.r.t. the outliers in the inputs
X , some works [Shah et al., 2014; Solin and Särkkä, 2015;
Tang et al., 2016] rely on Student-t Process to handle the
input outliers. Particularly, the method in [Shah et al., 2014;
Solin and Särkkä, 2015] replaces the Gaussian Process with
the Student-t Process and incorporates the noise term into the
kernel function (TPRK) for computational simplicity. Fol-
lowing [Shah et al., 2014; Solin and Särkkä, 2015], an input
dependent Student-t noise (TPRD) is proposed in [Tang et
al., 2016]. Note that Tang et al. [2016] prove that TPRK,
TPRD, and GPR have the same predictive mean if the kernel
has a certain property named β property, which is actually
satisfied by most kernels. Taking the frequently used kernels
implemented by GPML [Rasmussen and Nickisch, 2010] (the
most popular toolbox in Gaussian Process community) as
examples, 24 out of 28 kernels have β property, for which
the above Student-t Process based methods (i.e., TPRK and
TPRD) have the same predictive value as GPR and thus fail
to deal with the input outliers effectively.

In this paper, with the aim to handle both the input outliers
and the target outliers at the same time, we propose Student-
t Process Regression with Student-t Likelihood (TPRT). In
our model, the latent function f is assumed to be a Student-t
Process prior while the noise is assumed to be an independent
Student-t noise, instead of the noise incorporated into kernel
as in [Shah et al., 2014; Solin and Särkkä, 2015] or dependent
noise as in [Tang et al., 2016]. In addition to owning all
the advantages of GPR, such as good interpretability, non-
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parametric flexibility, and simple hyper-parameter learning,
our proposed TPRT method is robust to both input and tar-
get outliers, because the Student-t Process prior contributes
to robustness to the input outliers while the independent
Student-t noise assumption can cope with the target outliers.
One challenge of our TPRT method is that the inference is
analytically intractable. To solve the inference problem, we
utilize Laplace approximation for computing the posterior
and marginal likelihood. The computational cost of TPRT
is roughly the same as that of GPRT, which also requires
approximate inference. From the perspective of posterior and
marginal likelihood, we show that TPRT is more robust than
GPR and GPRT. Besides, both GPR and GPRT are proved to
be special cases of TPRT. Finally, extensive experiments also
demonstrate the effectiveness of our TPRT method on both
synthetic and real datasets.

2 Background
In this section, we will briefly introduce Gaussian Process
Regression (GPR), provide the definitions of Student-t dis-
tribution and Student-t Process, and then compare Gaussian
Process (GP) with Student-t Process (TP).

2.1 Review of GPR
In a regression problem, we have a training set D = {X,y}
of n instances, where X = {xi}ni=1 and xi denotes a d-dim
input vector; y = {yi}ni=1 and yi denotes a scalar output or
target. In GPR, we have

yi = f (xi) + εi, i = 1, 2, ..., n, (1)

where εi (i = 1, 2, ..., n) is assumed to be i.i.d. Gaussian
noise and the latent function f is given a GP prior, implying
that any finite subset of latent variables f = {f(xi)}ni=1 fol-
low a multivariate Gaussian distribution, i.e., p (f |X,K) =
N (f |µ,K), where µ is the mean vector and K is the
covariance matrix. Specifically, µ is an n-dim vector which
is usually assumed to be 0 for simplicity, and K is the
covariance matrix with Ki,j = k(xi,xj ;θk), in which k is
a kernel function and θk = (θk1, θk2, . . . , θkl) is the set of
kernel parameters. As εi is i.i.d. Gaussian noise, given the
latent variables f , the likelihood can be represented as

p (y|f , σ) = N
(
y|f , σ2I

)
, (2)

where σ2 is the variance of the noise and I is an n × n
identity matrix. Based on Bayes’ theorem, we can obtain the
following marginal likelihood by integrating over f :

p (y|X, σ,K) = N (y|0,Σ) , (3)

where Σ = K + σ2I . Then, the hyper-parameters σ and θk
can be learned by minimizing the negative logarithm marginal
likelihood

− ln p (y|X, σ,K) =
1

2
y>Σ−1y+

1

2
ln |Σ|+ n

2
ln 2π. (4)

After learning the hyper-parameters σ and θk, given an
input x∗ ∈ Rd, the predictive mean is

E (f∗|X,y,x∗) = k>∗ Σ−1y, (5)

where k∗ = {k(xi,x∗;θk)}ni=1. Please refer to [Rasmussen,
2006] for more details.

2.2 Student-t Distribution and Student-t Process

The Student-t distribution [McNeil, 2006] we use in this
paper is defined as follows.

Definition 1. An n-dim random vector x ∈ Rn follows the
n-variate Student-t distribution with degrees of freedom ν ∈
R+, mean vector µ ∈ Rn, and correlation matrix R ∈ Π(n)
if its joint probability density function (PDF) is given by

St (x|ν,µ,R) =
Γ[(ν + n)/2]

Γ(ν/2)νn/2πn/2|R|1/2

·
[
1 +

1

ν
(x− µ)

>
R−1(x− µ)

]− ν+n2
.

Given the definition of Student-t distribution, we can have
the definition of Student-t Process [Shah et al., 2014].

Definition 2. The process f is a Student-t Process (TP) on
X with degrees of freedom ν ∈ R+, mean function m: X →
R, and kernel function k: X × X → R if any finite subset
of function values have a multivariate Student-t distribution,
i.e., f = {f (xi)}ni=1 ∼ St(ν,µ,K) where K ∈ Π(n) with
Kij = k(xi,xj ;θk) and µ ∈ Rn with µi = m(xi). We
denote that the process f is a Student-t Process with degrees
of freedom ν, mean function m, and kernel function k as f ∼
TP (ν,m, k).

2.3 Comparison of GP and TP

In [Shah et al., 2014], it has been proved that GP is a special
case of TP with degrees of freedom ν → +∞. Among all the
elliptical processes with an analytically representable density,
TP is the most general one, which implies its expressiveness
for nonparametric Bayesian modeling. The comparison of TP
and GP is illustrated in Figure 1 ([Shah et al., 2014]), from
which we can see that TP allows the samples (blue solid) to
be away from the mean (red dashed) while the samples of
GP gather around the mean. This indicates that the outliers
(usually away from the mean) will not have much effect on
the mean of TP, but will affect the mean of GP severely as GP
enforces the samples to be close to the mean. Since we make
prediction mainly with the predictive mean in practice, TP is
expected to be more robust to outliers than GP.
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(b) Student-t Process

Figure 1: A comparison of TP and GP with identical mean function
(red dashed), kernel function, and hyper-parameters. Degrees of
freedom ν of TP is 5. The blue solid lines are the samples from
the processes and the gray shaded area represents 95% confidence
interval.
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3 Our TPRT Method
3.1 Assumptions of TPRT
Now, we introduce our Student-t Process Regression with
Student-t Likelihood (TPRT) model. In the regression prob-
lem (1), we assume

f ∼ TP (ν1,m, k), (6)

εi
ind∼ St(εi|ν2, 0, σ

2), i = 1, 2, . . . , n. (7)

Compared with GPR, TPRT has the following two differ-
ences:
• The latent function f is assumed to be TP, which is

more robust than GP. From Definition 2, we know that
the latent variables f follow the multivariate Student-
t distribution instead of Gaussian distribution. It has
been theoretically analyzed in [Box and Tiao, 1962;
O’Hagan, 1979] that Student-t distribution is a robust al-
ternative to Gaussian distribution. Specifically, Student-
t distribution can reject up to N outliers when there are
at least 2N observations in total. With sufficient data,
the degrees of freedom ν1, which controls how heavy
the tail of the distribution is, can be estimated based
on maximum marginal likelihood, yielding an adaptive
robust procedure. Based on the above discussions, the
latent variables f = {f (xi)}ni=1 are expected to be
more robust to input outliers.
• Secondly, the noise εi (i = 1, 2, . . . , n) is assumed to

follow the i.i.d. Student-t distribution instead of the
i.i.d. Gaussian distribution or the dependent Student-
t distribution. With (1) and (7), we can learn that the
likelihood p(yi|f(xi)) is a Student-t distribution, which
accounts for the robustness to target outliers. The rea-
sons for using i.i.d. Student-t noise instead of other
heavy-tailed distributions are as follows: (a) Student-
t distribution is a natural generalization of Gaussian
distribution. When degrees of freedom ν2 approaches
+∞, Student-t distribution reduces to Gaussian distri-
bution. (b) The robustness of Student-t distribution
has been theoretically proved in [Box and Tiao, 1962;
O’Hagan, 1979], as mentioned above. (c) The i.i.d.
Student-t noise assumption (7) has been successfully
used in some previous works such as Bayesian Lin-
ear Regression [West, 1984], spatio-temporal modeling
[Chen et al., 2012]. Thus, we expect that TPRT is also
robust to outliers in the targets y.

To the best of our knowledge, TPRT is the first improve-
ment of GPR that considers the robustness to both input and
target outliers. As discussed in Section 1, the previous ap-
proaches in [Kuss, 2006; Naish-Guzman and Holden, 2008;
Vanhatalo et al., 2009; Jylänki et al., 2011] replace the
i.i.d. Gaussian noise with heavy tailed noise, only aiming
at robustness to outliers in the targets y. Student-t Pro-
cess is used in [Shah et al., 2014; Solin and Särkkä, 2015;
Tang et al., 2016], but the robustness to input outliers is
compromised by their dependent noise assumption.

In contrast, our method combines the strengths of these two
types of methods and avoids their weaknesses. Specifically,
on one hand, the Student-t Process assumption (see (6))

enhances the robustness to input outliers. On the other hand,
independent Student-t noise (likelihood) (see (7)) tackles the
thin-tailed issue of Gaussian noise and avoids the problems
of the dependent noise.

One challenge of our proposed method is that the inference
is analytically intractable. Inspired by the Laplace approxi-
mation in Gaussian Process Classification [Rasmussen, 2006]
and GPRT [Vanhatalo et al., 2009], we propose a Laplace
approximation for the posterior and the marginal likelihood,
which are required for prediction and hyper-parameter learn-
ing separately. Note that a similar approach has been con-
sidered by West [1984] in the case of robust linear regression
and by Rue et al. [2009] in their integrated nested Laplace
approximation. In the following, for ease of presentation, we
collect all the hyper-parameters into θ = {θk, ν1, ν2, σ} for
the rest of this paper.

3.2 Approximation for the Posterior
In this section, we derive the approximation for the condi-
tional posterior of the latent variables f , and compare it with
the posterior of GPRT and GPR.

In particular, from (6) and Definition 2, we have
f ∼ St(ν1,µ,K).

Similarly as in GPR, the mean µ is assumed to be 0 for
simplicity. Then, we can have

p (f |X,θ) =
Γ[(ν1 + n)/2]

Γ(ν1/2)ν
n/2
1 πn/2|K|1/2

·
(

1 +
1

ν1
f>K−1f

)− ν1+n
2

. (8)

Considering (7) and (1), we have the likelihood

p (y|f ,X,θ) =
n∏
i=1

Γ[(ν2 + 1)/2]

Γ(ν2/2)ν
1/2
2 π1/2σ

·
[

1 +
1

ν2

(
yi − f (xi)

σ

)2
]− ν2+1

2

.(9)

Based on (8) and (9), the posterior of the latent variables f ,
p(f |X,y,θ) ∝ p (f |X,θ) p (y|X,f ,θ) , (10)

is analytically intractable. To solve the posterior of the
latent variables f , denoting the unnormalized posterior
p (f |X,θ) p (y|X,f ,θ) as exp (Ψ(f)), we use a second
order Taylor expansion of Ψ(f) around the mode of the
unnormalized posterior as follows,

Ψ(f) ' Ψ(f̂)− 1

2

(
(f − f̂)>A−1(f − f̂)

)
, (11)

where f̂ is the mode of Ψ(f)

f̂ = arg max
f

p (f |X,θ) p (y|X,f ,θ)

= arg min
f

lnQ, (12)

lnQ =
n∑
i=1

ν2 + 1

2
ln

[
1 +

1

ν2

(
yi − f (xi)

σ

)2
]

+
ν1 + n

2
ln

(
1 +

1

ν1
f>K−1f

)
,
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A−1 is the negative Hessian matrix of Ψ(f) at f̂ :

A−1 = −∇∇ ln p (f |X,θ) p (y|X,f ,θ)

= (ν1 + n)
K−1(ν1 + f̂>K−1f̂)− 2K−1f̂ f̂>K−1(

ν1 + f̂>K−1f̂
)2

+W ,

whereW is a diagonal matrix with

Wii = −(ν2 + 1)

(
yi − f̂i

)2

− ν2σ
2[(

yi − f̂i
)2

+ ν2σ2

]2 , i = 1, 2, . . . , n.

Based on (10) and (11), we can reach

p(f |X,y,θ) ∝ exp

(
−1

2

(
(f − f̂)>A−1(f − f̂)

))
, (13)

which is the unnormalized PDF of N (f̂ ,A). Therefore, we
obtain the approximation, q(f |X,y,θ), for p(f |X,y,θ)

p(f |X,y,θ) ' q(f |X,y,θ) , N (f̂ ,A), (14)

which will be used for making predictions in Section 3.4.

Comparison with GPRT: Note that the Laplace approxima-
tion is also utilized in GPRT [Vanhatalo et al., 2009] and the
f̂ in their approximation can be written as

f̂ = arg min
f

lnQ′, (15)

lnQ′ =

n∑
i=1

ν2 + 1

2
ln

[
1 +

1

ν2

(
yi − f (xi)

σ

)2
]

+f>K−1f .

We can see that the only difference between (12) and (15) is
that the term ν1+n

2 ln
(

1 + 1
ν1
f>K−1f

)
in (12) is the result

of a log transformation of the term f>K−1f in (15). If there
are input outliers, the term f>K−1f would be disturbed and
the log transformation can reduce the disturbance. Therefore,
the mean of approximate posterior of TPRT (i.e., (12)) is
more robust to input outliers than that of GPRT (i.e., (15)).
In fact, similar log transformations have been widely used in
data analysis and statistics [Box and Cox, 1964].
Comparison with GPR: For GPR, as the posterior distribu-
tion is symmetric, the mean of the posterior is equal to the
mode. Thus, the mean of the posterior can be written as

arg min
f
f>K−1f +

n∑
i=1

(
yi − f (xi)

σ

)2

. (16)

Comparing (12) and (16), we can see that both terms in (12)
take the log transformation of the corresponding terms in
(16). Thus, when there are outliers in the targets y or in
the inputs X , (12) would be more robust than (16). Note
that Student-t distribution is a more general form of Gaussian
distribution and the degrees of freedom ν1, ν2, controlling the
heavy tail, also affect the log transformation. In particular,
when ν1, ν2 approach +∞, (12) reduces to (16), which means
there is no log transformation.

3.3 Approximation for the Marginal Likelihood
In this section, we introduce the approximation for the
marginal likelihood of TPRT, which is needed for learning
the hyper-parameters, and compare it with the marginal likeli-
hood of GPR and GPRT. In particular, the marginal likelihood
of TPRT is

p(y|X,θ) =

∫
p (f |X,θ) p (y|X,f ,θ) df (17)

=

∫
exp (Ψ(f)) df ,

which is also analytically intractable. Similar to that as in
Section 3.2, we utilize the Laplace approximation. Consider-
ing the approximation of Ψ(f) in (11), we can rewrite (17)
as

p(y|X,θ) ' exp
(

Ψ(f̂)
)∫

exp
(
− 1

2

(
(f − f̂)> ·

A−1(f − f̂)
))

df ,

which can be evaluated analytically. Then we obtain an
approximation,− ln q(y|X,θ), for the negative log marginal
likelihood as follows,

− ln p(y|X,θ) ' − ln q(y|X,θ)

, lnQ|f=f̂ +
1

2
ln |B|+ c, (18)

where Q is the same as in (12), B = KA−1, and c =

−∑n
i=1 ln Γ[(ν2+1)/2]

Γ(ν2/2)ν
1/2
2 π1/2σ

− ln Γ[(ν1+n)/2]

Γ(ν1/2)ν
n/2
1 πn/2

− n
2 ln(2π).

Note that (18) is differentiable w.r.t. θ and thus the hyper-
parameters θ can be estimated by minimizing (18).

Comparisons with GPR and GPRT: The negative log
marginal likelihood of GPR is provided in (4) and the approx-
imate negative log marginal likelihood of GPRT [Vanhatalo et
al., 2009] is

lnQ′|f=f̂ +
1

2
ln |B′|+ c′, (19)

where Q′ is the same as in (15), B′ = I + KW , and
c′ = −∑n

i=1 ln Γ[(ν2+1)/2]

Γ(ν2/2)ν
1/2
2 π1/2σ

. Comparing the negative

log marginal likelihoods of GPR, GPRT, and TPRT, we can
observe that the main difference of their negative log marginal
likelihoods is also caused by the log transformation, similar
to the difference of their posteriors discussed in Section 3.2.
Due to the log transformation, the negative log marginal
likelihood of TPRT is more stable when there are outliers in
the inputs or the targets. Thus, the estimation of the hyper-
parameters θ, which is the solution of minimum negative log
marginal likelihood, is less affected by the outliers.

3.4 Making Predictions
Once obtaining the approximate posterior q(f |X,y,θ) and
the hyper-parameters θ, we can make predictions. Specif-
ically, given a new input x∗ ∈ Rd, the predictive mean is
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computed as

E (f∗|x∗,X,y) =

∫
E (f∗|f ,X,x∗) p(f |X,y,θ)df

'
∫

E (f∗|f ,X,x∗) q(f |X,y,θ)df

= k>∗Kf̂ , (20)

where k∗ = {k(xi,x∗;θk)}ni=1 and we use the fact for TP:
E (f∗|f ,X,x∗) = k>∗Kf (see Lemma 3 in [Shah et al.,
2014]). The predictive variance can be derived in a similar
way.

3.5 Implementation Details
When computing the Laplace approximation q(f |X,y,θ)
for the posterior of latent variables f , the main computational
effort lies in finding the mode of the unnormalized log pos-
terior, i.e., solving (12). In [Rasmussen, 2006], Newton’s
method is used to find the mode. However, in our model,
as the negative Hessian matrix of the log posterior is not
necessarily positive definite, we cannot use Newton’s method
and thus use a conjugate gradient algorithm instead.

After obtaining the mode f̂ using (12), The hyper-
parameters θ can be estimated by minimizing the approxi-
mate negative log marginal likelihood (18). Our implemen-
tation is also based on the conjugate gradient optimization,
in which we need to compute the derivatives of (18) w.r.t. θ.
The dependency of the approximate marginal likelihood on θ
is two-fold:

∂ ln q(y|X,θ)

∂θi
=

∑
k,l

∂ ln q(y|X,θ)

∂Kk,l

∂Kk,l

∂θi

+
∂ ln q(y|X,θ)

∂f̂

∂f̂

∂θi
. (21)

In particular, as ln q(y|X,θ) is a function of K, there is
an explicit dependency via the terms involving K. Besides,
since the change in θ will cause a change in f̂ , there is
an implicit dependency through the terms involving f̂ . The
explicit derivative of (18) can be easily obtained. The implicit
derivative accounts for the dependency of (18) on θ due to
change in the mode f̂ . As f̂ is the solution to (12), we have

∂ lnQ
∂f

∣∣∣∣
f=f̂

= 0. (22)

Thus, differentiating (18) w.r.t. f̂ can be simplified as
∂ ln |B|/∂f̂ . Then, we can have

∂ ln q(y|X,θ)

∂f̂

∂f̂

∂θi
= −1

2

∂ ln |B|
∂f̂

∂f̂

∂θi
, (23)

where ∂f̂
∂θi

can be obtained by differentiating (22) w.r.t. θi
(see [Kuss and Rasmussen, 2005]). After obtaining the ex-
plicit and implicit derivatives of (18) w.r.t. θ, we can solve θ
using conjugate gradient descent.

4 Relations to GPR and GPRT
Theorem 1 GPR is a special case of TPRT with ν1, ν2 →
+∞.

Proof. When ν1, ν2 → +∞, the TP assumption (6) reduces
to GP and the Student-t noise (7) reduces to Gaussian noise.
In this case, since the Laplace method approximates the pos-
terior and marginal likelihood with Gaussian distributions, it
is not difficult to prove that the obtained posterior and ML
using Laplace approximation are exactly the same as those of
GPR. Therefore, TPRT→ GPR with ν1, ν2 → +∞. �

Theorem 2 GPRT is a special case of TPRT with ν1 → +∞.

Proof. The proof is similar to that of Theorem 1 and thus we
omit the details here due to the space limitation. �

Theorem 1 and 2 indicate that TPRT is a natural general-
ization of GPR and GPRT, like Student-t distribution/process
is a generalization of Gaussian distribution/process. When
tuning ν1, ν2 carefully, we can guarantee that the performance
of TPRT is at least comparable with the performances of GPR
and GPRT. In fact, the hyper-parameters ν1, ν2 obtained from
maximum marginal likelihood instead of manual tuning can
already achieve satisfactory performance, as we will show in
the experiments.

5 Experiments
In this section, we evaluate our TPRT method on both syn-
thetic and real datasets. The experimental results demonstrate
the effectiveness of our TPRT method. We also investigate
why our TPRT method works on real datasets.

5.1 Datasets
The experiments are conducted on both synthetic and
real datasets. For the synthetic datasets, we use Neal
Dataset [Neal, 1997] and its variant with input outliers. The
training data are described as follows,

• Neal Data. This dataset was proposed by [Neal, 1997],
containing target outliers. This dataset contains 100
instances with one attribute.

• Neal with input outliers. To study the robustness to
the input outliers, we add outliers to 5% of inputs of the
Neal data, i.e., 5% of elements in the inputs X of Neal
data are randomly added or subtracted by 3 standard
derivations. We use Neal Xoutlier to denote Neal with
input outliers in Table 2.

In the testing stage, 50 instances are generated from the
underlying true function [Neal, 1997] as test data.

For real datasets, we use 6 real datasets from [Alcalá et al.,
2010; Lichman, 2013] and their detailed information is listed
in Table 1, from which we can observe that 6 real datasets
have different numbers of instances and attributes, and cover
a wide range of areas. Following [Shah et al., 2014], on
Concrete and Bike datasets, a subset of 400 instances are
randomly chosen from each dataset for the experiments. For
each dataset, 80% of instances are randomly sampled as the
training data and the remaining instances are used as the test
data.
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Table 1: Detailed information of the real datasets.

Dataset # of Instances # of Attributes Area
Diabetes 43 2 Medical

Machine CPU 209 6 Computer
MPG 398 8 Industry
ELE 495 2 Industry

Concrete 1030 9 Physical
Bike 17389 16 Social

5.2 Baselines, Experimental Settings and
Computational Complexity

For the kernel, we choose the squared exponential kernel
[Rasmussen and Nickisch, 2010], which is one of the most
commonly used kernels. As this kernel has the β property,
the methods in [Shah et al., 2014; Solin and Särkkä, 2015;
Tang et al., 2016] generate the same predictive mean as GPR.
Thus, we only report the results of GPR as a representative.
We also include GPRT as a baseline, in which the Laplace
approximation is also used following [Vanhatalo et al., 2009]
for fair comparison. Each experiment is repeated 10 times
and the average results of all methods on each dataset are re-
ported. We use the root mean squared error (RMSE) between
the predictive mean and the true value for evaluation.

Recall that when learning the hyper-parameters, we use
conjugate gradient method, in which the maximum iteration
number is set as 100. The initial values for the kernel param-
eters θk and the variance of the noise σ2 are set as 1. Note
that we use the same initial θk and σ2 for the baselines GPR
and GPRT.

The main computational cost of TPRT lies in solving
the inverse of the kernel matrix (O(n3) time complexity),
which can be accelerated by most methods speeding up GPR,
such as methods proposed by [Williams and Seeger, 2000;
Deisenroth and Ng, 2015; Wilson and Nickisch, 2015].

5.3 Experimental Results
The experimental results are summarized in Table 2, from
which we can observe that GPRT and TPRT have better per-
formance than GPR on the Neal dataset, which demonstrates
the effectiveness of GPRT and TPRT for handling the target
outliers. On the Neal Xoutlier dataset, TPRT outperforms
GPR and GPRT significantly and the reason can be explained
as follows. The Student-t Process assumption (6) is more
tolerant to the input outliers, and the log transformations in
the posterior and marginal likelihood reduce the effect of the
outliers. On all the real datasets, TPRT also outperforms all
the baselines and achieves the best results. Especially on the
Machine CPU dataset, the RMSE of TPRT is 13.24% lower
than that of GPR.

We further investigate why our TPRT method works on
the real datasets by studying the distribution of each real
dataset. In particular, we use kernel density estimation [Sil-
verman, 1986] to estimate the probability density function
of each attribute for each dataset. One observation is that
most datasets (5 out of 6 datasets except the Diabetes dataset)
have certain heavy-tailed distributed input attributes, which
may be caused by input outliers. Taking Machine CPU
and Concrete as examples, Figure 2 reports their estimated

Table 2: The RMSE results of our TPRT method and all baselines
on different datasets. The best results on each dataset are denoted in
boldface.

Dataset GPR GPRT TPRT
Neal 0.1676 0.0739 0.0558

Neal Xoutlier 0.4392 0.3815 0.3369
Diabetes 0.8895 0.8870 0.8512

Machine CPU 0.4719 0.4811 0.4094
MPG 0.3376 0.3360 0.3287
ELE 0.5785 0.5740 0.5500

Concrete 0.4013 0.4005 0.3894
Bike 0.3445 0.3536 0.3383

probability density function. It is clear that the estimated
densities of both datasets have heavy tails in some degrees.
As analyzed in Section 3.2 and 3.3, TPRT is more robust to
the input outliers than GPR and GPRT. This may explain why
TPRT performs better on these datasets. Especially for the
Machine CPU dataset, all input attributes exhibit heavy-tail
distribution, which may explain why TPRT has much lower
RMSE on this dataset as demonstrated in Table 2.
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Figure 2: The heavy-tailed phenomenon on the real datasets. Each
subfigure shows the results of a representative attribute of the corre-
sponding dataset.

6 Conclusion
In this paper, motivated by the fact that neither GPR nor
its variants are robust to both input and target outliers, we
propose a novel Student-t Process Regression with Student-
t Likelihood (TPRT), which is robust to the input and tar-
get outliers at the same time. Specifically, we propose the
Student-t Process prior assumption to handle the input out-
liers and Student-t likelihood (noise) assumption to handle
the target outliers. We derive a Laplace approximation for the
inference and analyze why TPRT is robust to both input and
target outliers from the views of the posterior and marginal
likelihood. We also prove that both GPR and TPRT are
special cases of TPRT. Extensive experiments demonstrate
the effectiveness of our TPRT method on both synthetic and
real datasets.
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