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ABSTRACT

Patch-based algorithms for image denoising have been widely used
in recent years. Most of patch-based methods just exploit patch re-
dundancy in spatial or frequency domain without considering inter-
scale dependencies. In this paper, we propose a novel patch-based
multiscale products algorithm (PMPA) for image denoising. It is
based on patch similarity in spatial domain and multiscale products
in wavelet domain. PMPA is divided into two stages to process the
smooth areas and non smooth areas (such as edges) individually. The
first stage is in the wavelet domain, then a locally adaptive window-
based denoising method (LAWML) based on multiscale products is
applied to process those wavelet coefficients corresponding to the
non smooth areas, then obtain one initial denoised image. The sec-
ond stage is in the spatial domain, then a non local means algorithm
is used to process those pixels in the smooth areas to obtain another
initial denoised image. The final denoised image is obtained by a
weighted averaging of all common pixels in both initial denoised
images. Experiments show that the proposed algorithm can have
competitive performance compared with the state-of-the-art patch-
based denoising algorithms for most of images.

Index Terms— Image denoising, nonlocal means, LAWML,
wavelet, multiscale products

1. INTRODUCTION

Image denoising has been an important problem in the field of image
processing for decades [1]. The aim of image denoising algorithms
is to remove noise as much as possible while preserving impor-
tant features. Wavelet-based techniques have been widely used
and proven to be effective for image denoising due to the energy
compaction property of wavelet transform [2, 3, 4, 5]. Generally,
wavelet transform yields only a small number of large coefficients
representing the important signal features (such as edges) and a large
number of small coefficients representing the noise.

Several important denoising methods considering the intrascale
or interscale dependencies in the wavelet domain have been pro-
posed in the past years, which gain better performance than the
traditional term-by-term wavelet denoising methods [6, 7, 8, 9]. Cai
and Silverman proposed a thresholding strategy by taking account
of the immediate neighbor coefficients [10]. Other famous strategies
include bivariate distribution modes [11], Gaussian scale mixture
(GSM) model [6], etc. The estimation results of these methods rely
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heavily on the accurateness of the model. In recent years, the most
competitive denoising methods are mainly patch-based methods,
such as nonlocal means (NL-means) [12], BM3D [13], LSSC [14]
etc. In the patch-based methods, each patch is substituted by a
weighted mean of the most similar patches found in the spatial do-
main. Typically, BM3D combines some tricks of clustering of noisy
patches, shrinkage operation and DCT-based transform to achieve
the state-of-the-art results [13].

In this paper, unlike BM3D, we propose a new patch-based mul-
tiscale products algorithm (PMPA) combining patch similarity in
spatial domain and intra-and-interscale dependencies in frequency
domain. PMPA is divided into two stages to obtain two initial
denoised images. The first stage is in the wavelet domain, and
we extend it to undecimated wavelet domain (UWT) and multiply
the adjacent wavelet subbands obtaining the multiscale products to
exploit the wavelet interscale dependencies. Besides, a locally adap-
tive window-based denoising method using maximum likelihood
(LAWML) [15] is then applied to process those wavelet coefficients,
corresponding to non smooth regions (such as edges in spatial do-
main), due to the simplicity and efficacy of LAWML. One advantage
of multiscale products is that multiplying the adjacent wavelet sub-
bands that can enhance edge structures while weakening noise. In
the multiscale products, significant structures (such as edges) can
be effectively distinguished from noise [8]. Hence, for each decom-
position level of product subband, a threshold is calculated in the
multiscale products. After that, a square window is used to perform
traversal searches in the multiscale products so as to calculate the
neighboring energy of products coefficients to identify significant
features. After processing the wavelet coefficients by LAWML, we
can obtain one initial denoised image by inversing wavelet trans-
form. The second stage is in the spatial domain, then we use a
NL-means method to process those smooth pixels, corresponding to
smooth areas in the multiscale products, in the noisy image to ex-
ploit the patch redundancy directly. Likewise, we can obtain another
initial denoised image by the NL-means method. Thus, the final
denoised image is obtained by a weighted averaging of all common
pixels in both initial denoised images.

2. RELATED WORKS

2.1. LAWML

Assume that an image x is contaminated with additive white Gau-
ssian noise (AWGN) with zero mean and variance σ2

n, i.e.

y = x+ n (1)

where n is the AWGN. Noisy and noiseless patches centered at a
pixel i ∈ N (the spatial domain) are extracted from y or x, respec-
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tively, as

yi(u) = y(u+ i), xi(u) = x(u+ i), u ∈ U

where U is a neighborhood of the origin. Apply a wavelet transform
to (1) , then (1) can be formulated as

Yj = Xj +Nj (j ∈ 1, · · · ,M) (2)

where Yj , Xj and Nj are all scalar, representing the j-th wavelet
coefficient of the noisy image y, noiseless image x, and noise n at
the same decomposition level, respectively; M is the total number
of wavelet coefficients, and (2) is obtained due to the linearity of the
wavelet transform. Due to the orthonormality of the wavelet trans-
form,Nj is AWGN. Choosing LAWML to process the wavelet coef-
ficients is mainly because of its simplicity and efficiency. LAWML
then operates in two steps. The first step is to perform an approxi-
mate maximum a posteriori estimation of the variance σ2

j for each
wavelet coefficient, which can use the coefficients of noisy image
in a local neighborhood and a model for σ2

j . The second step is
to substitute σ2

j in the expression of minimum mean-squared error
(MMSE) estimator of Xj . The expression of MMSE estimator X̂j
of Xj is as follows

X̂j =
σ2
j

σ2
j + σ2

n

Yj (3)

where σ2
j is unknown. Hence, we can estimate σ2

j using a square
window R(j) where its center coefficient is at Yj .

σ̂2
j = argmax

σ2≥0

∏
i∈R(j)

P (Yi|σ2
i )

= max

0,
1

M

∑
i∈R(j)

Y 2
i − σ2

n

 (4)

where P (·|σ2) is the Gaussian distribution with zero mean and vari-
ance σ2 + σ2

n, and M is the number of coefficients in the square
window R(j) centered at Yj . After obtaining the estimator σ̂j of
σj , use σ̂2

j instead of σ2
j in (3). In this case, σ2

n is also unknown in
(3). An effective estimator for σn is the median of absolute deviation
using the finest scale wavelet coefficients [16].

σ̂n =
median(|Yj |)

0.6745
(Yj ∈ subband HH) (5)

2.2. NonLocal Means

The goal of denoising methods is to provide an estimation x̂ of the
clean image x. The denoised image ŷ of the basic NL-means [12]
lies in a weighted average of potential all the image pixels, i.e.

x̂(i) =
∑
j∈N

w(i, j)y(j), i ∈ N (6)

where N is a regular pixel grid (the spatial domain), w(i, j)j∈N is
the set of weights that characterize the pixel i, which sum to one.
Each weight is determined by the patch similarity between patch yi
and patch yj , as

w(i, j) = e
− d(i,j)

h2 /
∑
n∈N

e
− d(i,n)

h2 (7)

where d(i, j) is distance measure between patch yi and patch yj ;
h > 0 is a parameter that controls the decay of the exponential func-
tion.

The distance d is generally defined as a windowed quadratic dis-
tance between patches,i.e.

d(i, j) =
∣∣∣∣∣∣yi√k − yj√k∣∣∣∣∣∣2

2
(8)

where k is a windowing kernel. Typically, k is rotational symmetric
and the weights k(u) are determined by the spatial distance from the
center.

In this paper, we use foveated distance as distance measure,
mainly due to the phenomenon, termed foveated vision described
in the Foveated NL-means [17]. The foveated distance,i.e.

dFOV (i, j) = ||F [y, i]−F [y, j]||22 =
∣∣∣∣∣∣yFOVi − yFOVj

∣∣∣∣∣∣2
2

(9)

where F is a foveation operator, which corresponds to a spatially
variant blurring operator with increasing blur at pixels far from the
center. Thus, the NL-means enforces the patches similarity of natu-
ral images and turns out to be effective methods to remove the noise.

3. THE PROPOSED ALGORITHM

3.1. Multiscale Products

Signal singularities evolve across scales while noise decays rapidly
along scales. Hence, we can imagine that multiplying the adja-
cent wavelet subbands would enhance edge structures while dilut-
ing noise. This favorite property has been exploited in [8, 18], etc.
In this paper, we define the multiscale products of subbands of the
noisy image as

P zYj(k) = Y zj (k) · Y zj (k + 1) (z = h, v, d) (10)

where k is the decomposition level of the corresponding subband,
and j is the position of coefficients in the corresponding subband; h,
v and d represent the horizontal, vertical, and diagonal direction
subbands, respectively.

3.2. Incorporating Neighboring Coefficients in Multiscale Prod-
ucts

Wavelet coefficients are highly correlated in a small neighborhood,
which implies that a large wavelet coefficient will likely have large
coefficients at its neighbors, which is known as the intrascale de-
pendencies. Hence, incorporating neighboring coefficients in the
multiscale products instead of in the wavelet coefficients can com-
bine the intrascale and interscale dependencies together.

For image denoising, an undecimated wavelet transform over
J stages is applied. At every decomposition level, three high-
frequency subbands are derived. By calculating the energy of a
neighboring area in the multiscale products, we can get more infor-
mation of edges or structural information of the signals. A square
window R(j) is used for each product coefficient to compute the
energy :

Szj (k) =
1

R2

∑
m∈R(j)

[P zmY
z
m(k)]2 (11)

where the window size R should be 3 × 3, 5 × 5, etc. We extend
the work of edge dectection to the product coefficients like in [8]
instead of the wavelet coefficients. A proper product threshold λ can
be determined as follows

λ = c · σ2(k) · log(R2) (12)
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where c is a variable parameter with c = (0.2 ∼ 0.3) · σn (this is
found empirically to perform well). Choosing a proper c is a trade-
off between preserving features and removing noise. Then the fol-
lowing rule is adopted in the thresholding process to identify the
significant structures :

X̂z
j (k) =


σ2
j

σ2
j+σ

2
n
Y zj (k) if Szj (k) ≥ λ

0 otherwise

(k = 1, · · · , J − 1; z = h, v, d)

(13)

k is the decomposition level, and z=h, v, d represents horizontal,
vertical, diagonal direction product subbands, respectively. σ(k)
in (12) is the standard deviation in the kth decomposition level of
diagonal product subband. Then, we use the median of absolute
deviation of the diagonal product subband to estimate σ(k).

The proposed method mainly undergoes two stages shown in
figure 1, which describes the diagram of the proposed method. 1
and 2 in the diagram means the start of the first and second stage
of denoising, respectively. y, WT and MP represents noisy im-
age, wavelet transform and multiscale products, respectively. ŷw

and ŷn is the initial denoised image by the multiscale products and
NL-means method, respectively. Thus the final denoised image can
be as follows:

ŷ = w1 · ŷw + w2 · ŷn, w1 + w2 = 1 (14)

where w1 and w2 is the weights, which controls the significance of
the initial denoised image by the multiscale products and NL-means
methods. The proposed method can be summarized in Algorithm 1 .

Algorithm 1 The Proposed PMPA Algorithm

1. In the first stage:

1) Use the UWT to decompose the noisy image y into J scales
and estimate the noise variance σ2

n of the noisy image using
(5);

2) Obtain the multiscale products using (10);

3) For each product subband:

a) Estimate the noise variance σ̂2(k);
b) Compute the product threshold λ using (12);
c) For each product coefficient:

A) Compute the energy Szj (k) using (11);
B) Process the wavelet coefficients using (13);

4) Obtain one initial denoised image ŷw by inversing the
wavelet transform.

2. In the second stage:

(a) Obtain another initial denoised image ŷn by perform-
ing NL-means in smooth regions (corresponding to small
thresholding);

3. Obtain the final denoised image using (14).

4. EXPERIMENTAL RESULTS

We have taken various experiments to test the performance of our
proposed method. An orthonormal wavelet basis with eight van-
ishing moments (sym8) over four levels of decomposition stages is

noisy 

image 

MPthresholding

spatial 

domain

MPWT IWT

denoised 

imageLAWML

NL-means

1
2

Weights 

averaging

Fig. 1. Diagram of the proposed denoising method
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Fig. 2. Comparison with different methods for Lena. (a)Comparison
in PSNR with Lena. (b)Comparison in SSIM with Lena.

applied and the window size 5×5 of LAWML is chosen empirically.
For computational purposes of the NL-means method, we have fixed
a search window of 10 × 10 pixels and a similarity square neigh-
borhood of 5 × 5 in all the experiments of NL-means method; the
value of w1 is chosen empirically by 0.5. Further, we choose the
most representative of the three state-of-the-art denoising methods,
BLS-GSM [6], NL-means [12] and BM3D [13], as our benchmark.
The other parameters of each denoising algorithm are consistent with
the given values in the corresponding referred papers [6, 12, 13, 15].
We use Peak Signal to Noise Ration (PSNR) and the structural sim-
ilarity (SSIM) index to evaluate performance of the denoising algo-
rithms. For reliable comparisons, a number of standard grayscale
images are used to test our algorithms, but only report results for
Lena(512× 512), Barbara (512× 512), Peppers (512× 512). Bar-
bara and Peppers is the representative of the textured and smooth
images, respectively. Every one is contaminated with additive white
Gaussian noise at five different power levels σ ∈ [10, 20, 30, 40, 50].

Table 1 summarizes the results obtained, and the best results are
shown in boldface. As shown in Table 1, the PSNR values increases
of 0.92 dB, 1.02 dB and 0.20 dB on average over BLS-GSM, NL-
means and BM3D for Lena. The proposed PMPA can achieve better
results for those images containing less textures, such as Lena and
Peppers, but achieve a slightly worse results for those images con-
taining lots of textures, such as Barbara, at different noise levels.
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(a) Original image (b) Noisy image (PSNR=18.61)

(c) BLS-GSM (PSNR=30.46) (d) NL-means (PSNR=29.20)

(e) BM3D (PSNR=31.28) (f) PMPA (PSNR=31.44)

Fig. 3. Example of the denoising results for Lena with σ = 30.

Figure 2 shows that the PSNR gains of the proposed PMPA method
relative to NL-means is up to 2.1dB for Lena at σ = 50. Perfor-
mance of the PMPA method is a slightly inferior to that of BM3D
for Barbara, mainly due to the fact that BM3D is more appropri-
ate for textured images and the search window size of NL-means is
restricted to a small size. Thus the performance of PMPA can be
further improved by enlarging the search window size, however, at
the cost of computational cost, so we limit the search window size
to a fixed value, which is a trade-off between the performance and
computational complexity. Thus PMPA is more suitable for piece-
wise smooth images due to the property of NL-means.

The human eye is the only one to decide whether the quality of
the images has been improved by the denoising algorithm. We dis-
play some denoising results comparing the PMPA with other state-
of-the-art denoising methods in Figure 3. From Figure 3, we can
realize that the proposed PMPA have better visual effects than BLS-
GSM and NL-means, which have more ringing artifacts and less ob-
vious edges, respectively. Compared with BM3D, both methods can
remove most of noise effectively, however, the PMPA can have bet-
ter visual effects in smooth zones.

As for the time complexity, the proposed denoising algorithm
is similar to BM3D, higher than BLS-GSM and NL-means. The
proposed method and BM3D get better results by sacrificing some
amount of computation time to obtain better performances. How-

ever, the advantage of the proposed method is that it can obtain com-
petitive performance compared with state-of-the-art denoising meth-
ods using a simple statistical model based on the multiscale prod-
ucts. The strategy of thresholding in the multiscale products can be
used as a framework extended to many redundant transforms, such
as nonsubsampled Contourlet transform (NSCT) [19] and Nonsub-
sampled Shearlet transform(NSST) [20], and so on, which can more
effectively capture image edges and contours than UWT, to further
improve the denoising performance.

Table 1. Summary of PSNR(dB) and SSIM index
Lena

σn 10 20 30 40 50 Average

BLS-
GSM

35.230 32.25 30.46 29.20 28.21 31.07
0.9651 0.9332 0.9023 0.8731 0.8448 0.9037

NL-
means

34.78 31.26 29.20 27.75 26.62 29.92
0.9523 0.9058 0.8657 0.8298 0.7960 0.8699

BM3D 35.91 33.04 31.28 29.88 28.85 31.79
0.9691 0.9406 0.9128 0.8862 0.8664 0.9150

PMPA 36.36 33.45 31.44 29.93 28.79 31.99
0.9707 0.9436 0.9154 0.8868 0.8593 0.9152

Barbara

BLS-
GSM

33.13 29.08 26.79 25.30 24.33 27.73
0.9681 0.9230 0.8753 0.8312 0.7930 0.8781

NL-
means

33.70 29.79 27.18 25.44 24.22 28.07
0.9661 0.9169 0.8643 0.8138 0.7674 0.8657

BM3D 34.93 31.71 29.73 27.95 27.15 30.29
0.9767 0.9524 0.9250 0.8921 0.8686 0.9230

PMPA 34.79 30.36 27.51 25.76 24.74 28.63
0.9755 0.9371 0.8891 0.8439 0.8069 0.8905

Peppers

BLS-
GSM

34.53 32.02 30.39 29.13 28.13 30.84
0.9641 0.9365 0.9094 0.8821 0.8563 0.9097

NL-
means

34.12 31.43 29.58 29.20 26.86 30.24
0.9546 0.9197 0.8898 0.8618 0.8337 0.8919

BM3D 34.99 32.71 31.16 29.85 28.75 31.49
0.9658 0.9413 0.9178 0.8947 0.8791 0.9197

PMPA 35.34 33.12 31.48 29.93 28.95 31.76
0.9683 0.9474 0.9261 0.8968 0.8826 0.9242

5. CONCLUSIONS

In this paper, we have proposed a new patch-based multiscale prod-
ucts algorithm (PMPA), combining the patch similarity in spatial do-
main and the intra-interscale dependencies in wavelet domain. Noisy
images are processed by NL-means in spatial domain and multiscale
products method in wavelet domain, respectively, and then obtain the
final denoised image. Experimental results show that the proposed
PMPA can achieve competitive performance and have better visual
effects compared with other state-of-the-art patch-based denoising
methods. It should be mentioned that the search window size of
NL-means is restricted to a small value. Hence, the performance of
PMPA can be further improved by enlarging the search window size
in the noisy images.
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