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a b s t r a c t 

Bilateral filter (BF) is a well-known edge-preserving image smoothing technique, which has been widely 

used in image denoising. The major drawback of BF is that its range kernel is sensitive to noise. To ad- 

dress this issue, we propose an entropy-based BF (EBF) with a new range kernel which contains a new 

range distance. The new range distance is robust to noise by exploiting the information from the de- 

noised estimate and the corresponding method noise, i.e., the difference between the noisy image and its 

denoised estimate. Moreover, in order to consider the local statistics of images, local entropy is applied to 

adaptively guide the range parameter selections. This allows our method to adapt to the images with dif- 

ferent characteristics. Experimental results demonstrate that the proposed EBF significantly outperforms 

the standard BF in terms of both quantitative metrics and subjective visual quality. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Bilateral filter (BF) [1] is a well-known edge-preserving tool,

hich has been widely used in image denoising. To remove noise

hile preserving edges, BF uses the weighted average of nearby

ixels in a local neighborhood, where weights rely on the spatial

nd intensity distance. The output of BF centered at q can be ex-

ressed as 

 

 (q ) = 

∑ 

p ∈S w σs 
· w σr 

· y (p ) ∑ 

p ∈S w σs 
· w σr 

, (1) 

here y ( p ) is the noisy pixel, and S is the neighborhood of size

(2 r + 1) × (2 r + 1) centered at q ; w σs and w σr are the spatial ker-

el and range kernel, both of which determine the practical per-

ormance of BF. More precisely, 

 σs 
= exp 

(
−|| p − q || 2 2 

2 σ 2 
s 

)
, (2) 

here the spatial distance || p − q || 2 
2 

measures the spatial correla-

ions and the spatial parameter σ s controls the size of the spatial

eighborhood, and 

 σr 
= exp 

(
−| y (p ) − y (q ) | 2 

2 σ 2 
r 

)
, (3) 

here the range distance | y (p ) − y (q ) | 2 measures the intensity

orrelations and the range parameter σ r controls how much a

earby pixel is weighted due to the pixel intensity. 
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The denoising performance of BF is mainly determined by the

ange kernel rather than the spatial kernel, which was demon-

trated in [2] ; hence we focus hereafter on the improvement of the

ange kernel. As stated above, the range kernel contains two cru-

ial factors, i.e., the range distance and range parameter. However,

oth of these factors are sensitive to noise. Thus many research

ffort s have concentrated on how to obtain a good estimation of

hese two factors under various noise levels. 

The conventional range distance is computed directly from

oisy images. This, however, leads to large estimation bias due to

he seriously corrupted correlations of pixels under strong noise.

ome invariants [3–6] of BF attempted to alleviate the estimation

ias by calculating the range distance from denoised images. How-

ver, these methods still cannot achieve satisfying results under

trong noise, since the denoised images are usually far away from

he original ones. Moreover, from the analysis of method noise 1 

7] , the denoised image does not contain the complete details. In

ther words, there still exist the residual image structures (the orig-

nal image structures) in method noise. As a result, the estimation

ccuracy of the range distance can be further improved, if we can

xploit the local similarities of the residual image structures. 

Besides, many research works focus on tuning the range pa-

ameter. Some recently developed adaptive bilateral filters (ABFs)

2,8,9] have adapted the range parameter to the global [2,8] or

ocal structures of the images [9] . Among them, Zhang et al.

2] demonstrated that the range parameter has more impact on the

enoising performace than the spatial parameter, and showed that
1 Method noise is often defined as the difference between the noisy image and 

ts corresponding denoised image. 

http://dx.doi.org/10.1016/j.sigpro.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.02.005&domain=pdf
mailto:dait14@mails.tsinghua.edu.cn
mailto:wzlusd@sz.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.sigpro.2017.02.005


224 T. Dai et al. / Signal Processing 137 (2017) 223–234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

t  

c  

l  

d  

p  

a  

t  

t  

i  

a  

a  

i  

a

 

a  

o  

a

 

w  

i  

[  

r  

[  

t  

t  

i  

s  

C  

t  

G

 

c  

t  

r  

g  

m  

m  

G  

l  

a  

t  

a  

p  

f  

p  

s  

[  

d  

i  

[  

p  

k  

a  

t

3

3

 

G

y  

w  

s

the optimal range parameter is linearly proportional to the stan-

dard deviation of the noise, i.e., σr = k · σ, where k is a fixed value

chosen empirically. Using such globally fixed range parameter may

lead to unsatisfying results for the images with various structures,

such as Barbara , since the global range parameter cannot consider

the local structures. More recently, a new ABF [9] with spatially

adaptive parameter selections has been proposed, which, however,

requires high computational complexity. Therefore, it is still de-

manding to propose a novel BF with spatially adaptive parameter

selections and low complexity. 

Motivated by the above observations, we propose an adaptive

entropy-based BF (EBF) with a new range kernel which includes a

new range distance. To be specific, the new range distance is es-

timated from a “clean” image, which is derived by exploiting the

information both from the denoised estimate and the residual im-

age in method noise. Compared with the range distance estimated

from the noisy or denoised image, ours is more robust to vari-

ous noise levels. Furthermore, in order to consider the structural

characteristics of the images, local entropy serves as a guide for

adaptive range parameter selections. In information theory, local

entropy represents the variance of local regions and catches the

natural properties of transition regions of edges. Based on this fact,

our method builds a set of entropy-based local image descriptors,

extracted from the noisy image and used to modulate the range

parameter across the image. Unlike the above-mentioned methods

[2,8,9] which learn the optimal filter parameters with high com-

plexity, our method obtains adaptive range parameters at a lo-

cal scale with a relatively low complexity. To apply the proposed

EBF for image denoising, a two-stage EBF based framework is pre-

sented, which is detailed in Fig. 4 . In summary, the main contribu-

tions of the paper are as follows: 

1. A new range distance is estimated from a “clean” image, which

exploits the information from the denoised image and the

residual image in method noise. 

2. A simple but effective approach is proposed to adaptively tune

the range parameter, which applies local entropy to character-

ize the local structures of images. 

The rest of this paper is organized as follows. Section 2 briefly

reviews the related works, including the major image denoising

methods and the existing progress of bilateral filter. In Section 3 ,

we introduce the basic concepts of method noise and local en-

tropy. In Section 4 , we propose an EBF-based denoising framework.

Section 5 shows the experimental results. Finally, we draw the con-

clusions. 

2. Related works 

In general, image denoising methods can be divided into three

categories: spatial domain, transform domain and learning-based

denoising methods [10] , where BF belongs to spatial domain meth-

ods. In this section, we briefly review the major methods for image

denoising and the main previous works related to BF. 

Spatial domain methods attempt to utilize the correlations of

natural images [11] . According to the selection of pixels (patches),

spatial filters can be categorized as local and nonlocal filters. Lo-

cal filters are restricted in a local spatial distance, such as Gaus-

sian filtering, anisotropic filtering [12] , total variation minimiza-

tion (TV) [13,14] and joint filtering [15] . However, these meth-

ods cannot perform well at high noise levels because the corre-

lations between neighboring pixels are corrupted by the severe

noise. To overcome this issue, the nonlocal filters utilize the self-

similarity of natural images in a nonlocal manner. Nonlocal means

(NLM) filter [7] , achieves a denoised pixel by weighted averag-

ing all other pixels in the noisy image, whose pixel similarity de-

pends on the patch. The main drawback of NLM filters is that these
atch-based methods are computational-intensive and often tend

o over-smooth image details. More recently, the idea of nonlo-

al similarity has been extended to transform domain [16–18] and

earning-based methods [19–21] in order to further improve the

enoising performance. Among them, learning-based method pro-

osed by Elad et al. [19] obtained good results based on sparse

nd redundant representations over learned dictionaries. Besides,

he so-called BM3D [16] achieved remarkable results by combining

he patch-based techniques like NLM with transform-based filter-

ng. Beyond utilizing the nonlocal prior, some important works can

lso obtain remarkable results by utilizing low-rank prior of im-

ges, such as WNNM [22] . In a different direction, it was observed

n [23,24] that neural networks can be successfully applied to im-

ge denoising. 

Besides the above patch-based methods, BF has received much

ttention due to its simplicity and efficiency. Most BF-based meth-

ds can be roughly divided into two lines of work, i.e. theoretical

nalysis and performance improvement. 

Some theoretical works of BF deserve mentioning. In [25] , it

as demonstrated that BF emerges from Bayesian approach and

s identical to the first iteration of Jacobi algorithm. Barash et al.

26] related BF with anisotropic diffusion (AD) [12] . Besides, the

elationship between BF and TV regularization was developed in

27] , which was further generalized by casting BF, median fil-

ers, mode filtering, nonlinear diffusion filtering, and regulariza-

ion techniques in a single unified framework of discrete regular-

zation theory in [28] . In a different direction, Takeda et al. [29] ob-

erved that BF is a simple example of kernel regression. Recently,

araffa et al. [30] proposed an iterated version of BF that is robust

o outliers and demonstrated how it can be used to remove non-

aussian noise. 

More works focus on the performance improvement of BF, in-

luding parameter selection and acceleration. For parameter selec-

ion, Zhang and Gunturk [2] demonstrated that the optimal σ s is

elatively insensitive to the noise standard deviation σ and it is

enerally in the range [1.5, 2.1], while the range parameter σ r has

ore impact on the denoising performance. Based on the experi-

ental results obtained on a large set of natural images, Zhang and

unturk suggested that the optimal σ r should be approximately

inearly related to σ . Another ABF [8] for sharpness enhancement

nd noise removal used a complex training procedure to optimize

he filter parameters. In addition, many works have been done to

ccelerate BF. A direct computation of BF requires O ( r 2 ) operations

er pixel. To speed up BF, researchers have come up with several

ast algorithms [31–37] . Durand et al. [31] sped up BF based on a

iecewise-linear approximation in the intensity domain and sub-

ampling in the spatial domain. In addition, it was observed in

32] that BF can be considered as a linear filter acting in three-

imensions, where the three-dimensions are obtained by augment-

ng the image intensity to the spatial dimensions. The algorithm in

33] enabled bilateral filtering in constant time O (1) without sam-

ling, which was further improved by using trigonometric range

ernels in [34,35] . More recent works like [36,37] further acceler-

ted BF by approximating the range kernel using polynomial and

rigonometric functions. 

. Fundamentals 

.1. Method noise 

Given a gray-level image y contaminated with additive white

aussian noise (AWGN), i.e., 

 = x + n , (4)

here x is the clean image, and n is AWGN with zero mean and

tandard deviation σ . 
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(a) BF (b) Method noise

Fig. 1. Denoised result of BF in (a) and its method noise in (b) for the image Lena 

at σ = 20 . 
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2 In practice, the denoised estimate ̂  y still contains some amount of noise due to 
Method noise ̂ n is often defined to be the difference between

he noisy image and its denoised image, then 

̂ n can be expressed

s 

 

 = y −̂ y , (5) 

here ̂  y is the denoised image of y . 

Method noise is often used to evaluate whether a denoising

ethod has removed too many structures from the input image,

nd the fewer details we can see in the method noise, the more

etails have been preserved in the denoised image. 

For better understanding, we give an example to show the de-

oised image of BF and its corresponding method noise in Fig. 1 .

t can be seen that there still exist rich original image structures

n the method noise, which indicates the substantial potential im-

rovement that can be made for the denoising method. 

.2. Local entropy 

Given an image with L gray levels, following Shannon’s defini-

ion of entropy [38] , Kapur et al. [39] define the entropy of an im-

ge as 

(P 0 , P 1 , . . . , P L −1 ) = −
L −1 ∑ 

i =0 

P i log P i , (6)

here P i = 

N i 
N is the probability of gray level i appearing in the im-

ge, N is the total number of pixels in the image, and N i is the

umber of pixels with grayscale i . 

Given a pixel in position q , suppose � is a small neighborhood

f size m × n centered at q , then the local entropy e ( q ) of � is

efined to be 

 (q ) = −
L −1 ∑ 

k =0 

p k log p k , (7)

here p k = 

n k 
m ×n is the probability of gray level k appearing in the

eighborhood �, and n k is the number of pixels with gray level

 in the neighborhood �. Hence, we use a sliding window of size

 × n (e.g. 9 × 9) to compute the local entropy. 

In information theory [38] , the entropy function

(P 0 , P 1 , . . . , P L −1 ) has two important properties: 

1. Entropy function E(P 0 , P 1 , . . . , P L −1 ) takes its largest value for

the uniform distribution, i.e., 

E(P 0 , P 1 , . . . , P L −1 ) ≤ E 

(
1 

L 
, 

1 

L 
, . . . , 

1 

L 

)
. 

2. We define φ(L ) = E 
(

1 
L , 

1 
L , . . . , 

1 
L 

)
, then φ( L ) of a variable L is

non-decreasing, i.e., 
φ(L ) ≤ φ(L + 1) . t
Thus, it can be indicated that the local entropy is relatively

mall in homogeneous neighborhoods (e.g. background) but rela-

ively large in heterogeneous regions (e.g. area of edges). This fact

ill give us a useful guide for tuning the parameter of our method.

. The proposed EBF based denoising framework 

As stated before, bilateral filtering is sensitive to the range dis-

ance and range parameter. To overcome such limitations, we at-

empt to utilize the residual image in method noise to improve

he robustness of the range distance, and exploit the characteris-

ics of images to adjust the range parameter. As a result, we pro-

ose a new range kernel, consisting of a new range distance based

n method noise and adaptive range parameter selection based on

ocal entropy. 

.1. A new range distance based on method noise 

The conventional BF directly uses the noisy image to estimate

ixel similarities. Due to the impact of noise, the range distance

sually cannot be reasonably estimated. To address this problem,

e try to derive the range distance from the clean image instead

f the noisy image. In this section, we show how to compute the

ixel similarity between the clean pixels, i.e., the squared Euclidean

istance | x (p ) − x (q ) | 2 . 
To the end, the clean image can be approximated by the de-

oised estimate and the residual image. Since we have ̂ n (p ) =
 (p ) − ̂ y (p ) , then the pixel of the clean image can be written as 

 (p ) = y (p ) − n (p ) = ( ̂  y (p ) + ̂

 n (p )) − n (p ) 

= ̂

 y (p ) + ( ̂  n (p ) − n (p )) 

= ̂

 y (p ) + �x (p ) , (8) 

here �x (p ) = ̂

 n (p ) − n (p ) denotes the residual image in method

oise. For simplicity, we assume that method noise ̂ n contains all

he additive noise n due to the smoothing effect of the bilateral fil-

ering, such that the denoised estimate ̂  y contains no noise 2 . Note

hat from the previous work in [40] , we cannot get good denoising

esults by simply adding �x ( p ) back to ̂ y (p ) due to the fact that

x ( p ) can only be obtained as a coarse approximation. 

Based on (8) , the pixel similarity between clean pixels x ( p ) and

 ( q ) is derived as follows 

 x (p ) − x (q ) | 2 = | ( ̂  y (p ) + �x (p )) − ( ̂  y (q ) + �x (q )) | 2 
= | ̂  y (p ) − ̂ y (q ) | 2 + | �x (p ) − �x (q ) | 2 

+2( ̂  y (p ) − ̂ y (q ))(�x (p ) − �x (q )) , (9) 

here we can see that the contribution of the denoised pixels, i.e.,

 ̂

 y (p ) − ̂ y (q ) | 2 on the right side plays an important role. However,

f the other two terms are not zero, the term | x (p ) − x (q ) | 2 cannot

eglect the influence of the second term | �x (p ) − �x (q ) | 2 and the

ast term 2( ̂  y (p ) − ̂ y (q ))(�x (p ) − �x (q )) , which exploits the rela-

ionship between the residual image and the denoised estimate. 

Now let us see how to obtain the residual signal �x ( p ). Due to

he low signal noise ration (SNR) of method noise, it is difficult to

et the residual image �x ( p ) from the method noise. To reduce the

ffect of noise, the authors in [40] used an adaptive Wiener filter

o denoise the method noise. It is beneficial to use Wiener filter,

ince it can smooth the noise while preserving the residual image

ithout adding much computational cost. Therefore, we adopt an

daptive Wiener filter to extract the residual image. 
he imperfect denoising. 
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Fig. 2. Examples of BF with different σ r ( σs = 5 ). Top row shows the profile of a 1D range kernel and bottom row shows the results obtained by the corresponding BF. As 

σ r increases, BF gradually approximates Gaussian filtering more closely. The original image intensity values span [0, 1]. 
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Then the new range kernel ̂ w σr is obtained by replacing | y (p ) −
y (q ) | 2 in (3) with | x (p ) − x (q ) | 2 in (9) 

̂ w σr 
= exp 

(
−| x (p ) − x (q ) | 2 

2 ̂  σ 2 
r 

)
, (10)

where the range parameter ˆ σr controls the amount of filtering,

which is estimated in the following parts. 

4.2. Adaptive range parameter based on local entropy 

The range parameter plays a key role in determining the con-

trast of features to preserve. As the range parameter increases,

BF gradually approximates Gaussian convolution more closely [41] .

This is because as the range parameter increases, the range kernel

become wider and flatter (see Fig. 2 ), i.e., is nearly constant over

the intensity of the image. 

In order to better illustrate the effects of the range parameter,

we show plots of the range kernel with different range parame-

ters in Fig. 2 . It can be seen that as the range parameter increases,

the range kernel widens and flattens. As a result, images are more

blurred as σ r increases. (see Fig. 2 (a–c)). 

Most of the existing literature uses globally fixed range pa-

rameter without considering local structures [2,8] or uses spatially

adaptive range parameter with high computational cost [9] . In-

stead, we propose adaptive range parameter selections in terms of

entropy-based local image descriptor with low time complexity. 

4.2.1. Entropy-based local image descriptor 

Local image descriptors are necessary to appropriately guide the

modulation of the filtering parameters across the image. Entropy-

based image descriptors have already been used for edge detection

[42] , and adaptive filters based on local image content [43] . We

use entropy-based image descriptor to guide the modulation of the

range parameter. From Section 3 , we know that local entropy can

be applied to represent the local characteristics of an image. 

To better illustrate the characteristics of local entropy, for noise-

free images in Fig. 3 (a–d), Table 1 shows entropies calculated for

each image at various noise levels. Specifically, E = 0 for the flat

area, and E = 1 . 0 for textured area, where grey levels are assumed

to be few (only two in this example) different values because of
he regularity of the texture. Whereas E = 7 . 0 in the gradient area

nd E = 6 . 66 in the complex area, where the grey levels are much

ore than those in flat and textured areas. This implies that these

reas can be distinguished by entropy under the noise-free cases.

s noise (e.g. σ = 10 ) is added to the images, entropies of these

reas will increase to varying degrees. From Table 1 , we can see

hat the entropies of flat and textured areas increase faster than

hose of gradient and complex areas. This is mainly because en-

ropy function is a non-decreasing function of the grey levels for

he uniform distribution. When adding noise, grey levels of flat

nd textured areas increase much faster than those of gradient and

omplex areas. As the noise becomes strong (e.g. σ = 40 , 50 ), the

ifference of the entropies between these areas becomes smaller.

ig. 3 (e and f) show the local entropy maps for the image Lena , in

bsence and presence of noise. For an image, the local entropy is

omputed with a sliding window of size 9 × 9 at every pixel loca-

ion. It can be seen that entropies of the heterogeneous areas (e.g.

dges) are generally larger than those of the homogeneous areas

e.g. background area) in the absence and presence of noise. 

All these above-mentioned results indicate that local entropy

an be used to separate the areas of flat, gradient, textured, and

omplex regions, regardless of the presence of noise or not. Moti-

ated by this fact, we propose an entropy-based way to adaptively

une the range parameter, which is shown in the next section. 

.2.2. Entropy-based range parameter selections 

This section focuses on how to determine the range parameter

ccording to the characteristics of the images. As the range param-

ter increases, BF is more close to Gaussian convolution [41] . Re-

ent works like [2,8] with global range parameter cannot adapt to

he images with various structures, such as Barbara , for the global

ange parameter cannot consider the local structures. 

Instead, we seek spatially adaptive range parameter selections

y considering the local characteristics of images. As stated be-

ore, different areas in images, such as flat, gradient, texture and

omplex areas, can be distinguished by local entropy. More specif-

cally, images have relatively larege local entropy in heterogeneous

egions, but relatively small ones in homogeneous areas. Moti-

ated by this fact, we propose a local entropy-based approach to

daptively tuning the range parameter. Specifically, the heteroge-
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(f) Local entropy for the noisy Lena

Fig. 3. Panels (a-d) show a 128 × 128 flat, gradient, textured, and complex, noise-free area. Entropies for these images are shown in Table 1 . Panels (e-f) show local entropy 

maps of noise-free and noisy image Lena , respectively. 
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Fig. 4. Diagram of the proposed denoising framework. 

Table 1 

Entropies ( E ) for the flat, gradient, texture, and complex images shown in Fig. 3 . 

σ 0 10 

Flat Gradient Texture Complex Flat Gradient Texture Complex 

E 0 7 .0 1 .0 6 .66 3 .09 7 .95 4 .10 7 .65 

σ 40 50 

Flat Gradient Texture Complex Flat Gradient Texture Complex 

E 6 .72 7 .60 5 .12 7 .42 6 .69 7 .47 5 .31 7 .69 
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eous areas would be fit for relatively smaller range parameter

o preserve edges better, while the homogeneous regions would

dapt to relatively larger range parameter to remove the noise

etter. 

To this end, we adopt a simple Sigmoid function. Then spatially

daptive range parameter ˆ σr can be expressed as 

ˆ r = K(e (q ) , α, k, T ) · σ, (11)
here 

(e (q ) , α, k, T ) = 

k 

1 + exp (−α(e (q ) − T )) 
, (12)

here k determines the amplitude value of the Sigmoid function,

nd e ( q ) is the local entropy centered at q in an m × n neighbor-

ood. α controls the width and monotonicity of the Sigmoid func-

ion. To be specific, if α < 0, K ( e ( q ), α, k, T ) is monotonically de-

reasing; if α = 0 , K ( e ( q ), α, k, T ) is a constant; if α > 0, K ( e ( q ),
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Fig. 5. The nine tested images Lena, Barbara, Boat, Pepper, Cameraman, House, Hill, Man and Montage . 
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3 http://www.cs.tut.fi/ ∼foi/GCF-BM3D/index.html#ref _ software 
α, k, T ) is monotonically increasing. T is a threshold separating the

heterogeneous areas and homogeneous areas. 

4.3. The proposed EBF based denoising framework 

After obtaining the new range kernel ̂ w σr in (10) , then the pro-

posed EBF can be written as 

 y (q ) = 

∑ 

p ∈S w σs 
· ̂ w σr 

· y (p ) ∑ 

p ∈S w σs 
· ̂ w σr 

. (13)

In order to apply the proposed EBF to image denoising, a two-

stage EBF based denoising framework is presented in Fig. 4 . It can

be observed that the first stage consists of BF filtering and local

entropy computing, and then outputs a denoised estimate, the cor-

responding method noise and local entropy map for the use of the

proposed EBF in the second stage. Specifically, the denoised esti-

mate and method noise are used to produce a new range distance

to improve the robustness. At the same time, local entropy map is

used to adaptively tune the range parameter. Then the proposed

EBF denoises the noisy image and outputs the final denoised im-

age. 

For clarity, the denoising process is detailed in Algorithm 1 . 

Algorithm 1 The proposed EBF based denoising framework. 

Input: Noisy image y with noise variance σ 2 

Output: Denoised image ̂  y 

1: ̂ x ← Apply BF to generate a denoised estimate via (1) ; 

2: ̂ n ← Obtain method noise using (5) ; 

3: for each pixel q in ̂

 y do 

4: e (q ) ← Calculate local entropy of y using (7) ; 

5: ˆ σr ← Compute the range parameter via (11) ; 

6: �x (q ) ← Extract the residual image from ̂

 n by Wiener filter; 

7: | x (q ) − x (p ) | 2 ← Estimate the new range distance between

the pixel x (q ) and x (p ) via (9) ; 

8: ̂ w σr ← Compute the new range kernel using (10) ; 

9: ̂ y (q ) ← Obtain the denoised result of y (q ) using (13) . 

10: end for 

11: ̂ y ← Return the denoised image. 
. Experimental results 

.1. Setup 

As baselines, we use the standard BF [1] , robust BF (RBF) [3] ,

ecently developed optimally weighted BF (WBF) [6] and multires-

lution BF (MBF) [2] . All the experiments are tested on commonly

sed test images from the standard image dataset 3 , which presents

 wide range of edges, textures and details and are shown in Fig. 5 .

ach image is contaminated with AWGN at σ ∈ [10, 20, 30, 40, 50],

nd the intensity value for each pixel of the image ranges from 0

o 255. For the baseline algorithms, we set the following param-

ters: σs = 1 . 8 , and the kernel radius r = 5 . The critical range pa-

ameter is set to σr = kσ . In the case of BF, we set σr = 1 . 95 × σ
ecommended by Liu et al. [44] . For RBF and WBF, we tune the k

o obtain the better results. Other parameters are set as the default

arameter settings in the original literature [1–3,6] . 

For the proposed EBF, the window size are set to 11 × 11, 3 × 3

or the local entropy computing and Wiener filter, respectively; for

he range parameter ˆ σr = K(e (q ) , α, k, T ) · σ, we set α = −1 and

 = 2 . 5 empirically. T is a threshold recommended by Yan et al.

45] , i.e., T = 0 . 7 · e max , where e max is the maximal local entropy of

he entropy map. The influence of the parameters is discussed in

he following parts. In the case of BF in our denoising framework,

F with σr = 6 × σ in the first stage turns out to be a better choice

n terms of PSNR values. 

.2. Evaluation criteria 

Two objective criteria, namely Peak Signal-to-Noise Ration

PSNR) and Feature similarity index (FSIM) [46] , are used to evalu-

te the denoising results. Given two images x and y , PSNR can be

omputed as follows: 

SNR (x , y ) = 10 log 10 

S 2 

MSE 

, (14)

here MSE (x , y ) = 1 /N 

∑ N 
n =1 (x n − y n ) 2 , where N is the number of

ixels in a image; S is the dynamic range of allowable image pixel

ntensities. For an 8-bit gray-level image, S = 255 . 

As a complementary metric to PSNR, FSIM is a metric conceived

o simulate the response of the human visual system (HVS), which

an better reflect the structure similarity between the reference

http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software
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Fig. 6. Variations of the PSNR for different parameter values for the new range kernel with (a) different α (k = 2) , and (b) different k (α = −1) . (c) An example of the 

curves for the function K ( e ( q ), α, k, T ) with various α ( e (q ) ∈ [0 , 4] , k = 2 , T = 2 ). 
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Fig. 7. PSNR values of the proposed method with the traditional range distance derived from the noisy image and fixed range parameter: ˆ σr = 2 σ (EBF1), with the new 

range distance and fixed range parameter: ˆ σr = 2 σ (EBF2), and with the new range distance and adaptive ˆ σr based on local entropy (EBF). 
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mage and the target image. Given two images x and y , FSIM can

e calculated as follows: 

SIM (x , y ) = 

∑ 

i ∈ � S L (i ) · P C m 

(i ) ∑ 

i ∈ � P C m 

( i ) 
, (15)

here � means the whole image spatial domain, S L measures the

imilarity of phase congruency (PC) and gradient magnitude (GM)

eatures; PC m 

is the maximal PC feature among all the PC features.

or more details about FSIM refer to [46] . 

.3. Effects of the new range kernel and parameter analysis 

The function K ( e ( q ), α, k, T ) introduces three basic parame-

ers: the scaling factor α, the amplitude value k and the position

arameter T . Among them, we set T = 0 . 7 · e max which is recom-

ended by Yan et al. [45] . The α determines the shrinkage direc-

ion and rate of the K ( e ( q ), α, k, T ). In order to remove the noise

etter, it is necessary to satisfy the condition that the larger the

ocal entropy, the smaller the range parameter. That is, α should
e smaller than zero. Let us show intuitively the effect of α. An

xample of the curves for the K ( e ( q ), α, k, T ) with different α is

hown in Fig. 6 (c), where we can see that the larger α values, the

atter curves of the K ( e ( q ), α, k, T ). Moreover, from Fig. 6 (a), we

an see that our method is sensitive to the α selections at higher

oise levels. This is because the discrimination of different areas

n entropy tends to become weak (see Table 1 ), which then re-

ults in unreliable estimation of the range parameter. In this case,

t is more reasonable to use the flatter curve of the K ( e ( q ), α, k, T ),

hich corresponds to small variations of the range parameter. Em-

irically, α = −1 achieves the best results. Similarly, we show the

SNR curves for varying k and fixed α = −1 in Fig. 6 (b). It can be

een that the best result is obtained with k = 2 . 5 . 

In order to better illustrate the effects of the new range kernel̂ 

 σr in various noise levels for different images, we categorize ̂ w σr 

nto three cases: the traditional range distance | y (p ) − y (q ) | 2 with

xed ˆ σr (EBF1), the new range distance | x (p ) − x (q ) | 2 with fixed

ˆ r (EBF2), and the new range distance | x (p ) − x (q ) | 2 with adap-
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Table 2 

PSNR values of BF [1] , RBF [3] , WBF [6] , MBF [2] and the proposed EBF with various tested images for various values of σ . The top PSNR 

results for each image and on each noise level are highlighted in bold. 

σ 10 20 30 40 50 Average 

Lena (512 × 512) BF 33 .61/0.9777 29 .80/0.9448 27 .25/0.9037 25 .36/0.8623 23 .88/0.8252 27 .98/0.9027 

RBF 34 .10/0.9785 31 .43/0.9508 29 .56/0.9222 28 .08/0.8876 26 .93/0.8580 30 .02/0.9194 

WBF 34 .61 /0.9789 31 .51 /0.9500 29 .58 /0.9213 28 .09 /0.8871 26 .19/0.8579 29 .99/0.9190 

MBF 34 .06/0.9714 30 .98/0.9494 29 .26/0.9313 28 .02/ 0.9159 27 .16 / 0.9034 29 .89/0.9342 

EBF 34 .55/ 0.9790 31 .33/ 0.9572 29 .45/ 0.9357 28 .06/0.9141 26 .92/0.8937 30 .06/0.9359 

Barbara (512 × 512) BF 31 .39/0.9765 27 .11/0.9412 24 .90/0.9039 23 .40/0.8679 22 .27/0.832 25 .81/0.9043 

RBF 28 .47/0.9604 25 .57/0.9223 24 .27/0.8970 23 .54/0.8761 23 .00/0.8573 24 .97/0.9026 

WBF 31 .42/0.9766 27 .24/0.9418 25 .12/0.9045 24 .00/0.8745 23 .23/0.8512 26 .20/0.9097 

MBF 31 .39/0.9734 27 .25/0.9447 25 .24/0.9216 24 .11/0.9014 23 .45/0.8868 26 .28/0.9255 

EBF 31 .60/0.9770 27 .68/0.9519 25 .58/0.9303 24 .32/0.9086 23 .46/0.8893 26 .53/0.9314 

Boat (512 × 512) BF 32 .15/0.9741 28 .45/0.9417 26 .20/0.9082 24 .50/0.8742 23 .09/0.8419 26 .87/0.9080 

RBF 31 .52/0.9758 29 .02/0.9465 27 .44/0.9151 26 .22/0.8871 25 .23/0.8617 27 .88/0.9172 

WBF 32 .63/0.9776 29 .42/0.9457 27 .58 /0.9143 26 .26 /0.8858 25 .25 /0.8606 28 .22 /0.9168 

MBF 31 .91/0.9664 28 .64/0.9247 26 .91/0.8933 25 .74/0.8686 24 .88/0.8488 27 .61/0.9003 

EBF 32 .65 / 0.9790 29 .44 / 0.9498 27 .47/ 0.9224 26 .09/ 0.8962 25 .00/ 0.8737 28 .11/ 0.9242 

Pepper (256 × 256) BF 33 .09/0.9529 28 .87/0.9082 26 .25/0.8592 24 .29/0.8118 22 .78/0.7698 27 .05/0.8603 

RBF 32 .57/0.9453 29 .86/0.9218 27 .83/0.8932 26 .25/0.8635 24 .93/0.8406 28 .28/0.8928 

WBF 33 .59/ 0.9544 30 .25 /0.9232 27 .95 /0.8910 26 .31 /0.8609 24 .97 /0.8369 28 .61 /0.8932 

MBF 32 .98/0.9431 29 .42/0.9069 27 .29/0.8834 25 .83/0.8658 24 .59/0.8488 28 .02/0.8896 

EBF 33 .83 /0.9530 30 .25 / 0.9249 27 .86/ 0.9011 25 .98/ 0.8767 24 .47/ 0.8532 28 .48/ 0.9018 

Cameraman (256 × 256) BF 32 .72/0.9426 28 .46/0.8836 25 .86/0.8278 23 .87/0.7745 22 .43/0.7338 26 .66/0.8324 

RBF 30 .39/0.9201 27 .22/0.8712 25 .87/0.8386 24 .80/0.8166 23 .77/0.7860 26 .41/0.8465 

WBF 32 .76 /0.9430 28 .81/0.8893 26 .61/0.8423 25 .10/0.8105 23 .91/0.7791 27 .43/0.8528 

MBF 32 .09/0.9267 28 .51/0.8664 26 .55/0.8357 25 .10/0.8121 24 .03 /0.7919 27 .25/0.8465 

EBF 32 .74/ 0.9451 29 .20 / 0.8990 26 .99/0.8692 25 .20/0.8427 23 .71/ 0.8158 27 .57/0.8743 

House (256 × 256) BF 33 .79/0.9435 29 .61/0.8955 26 .97/0.8369 25 .19/0.7874 23 .58/0.7428 27 .82/0.8412 

RBF 33 .93/0.9342 31 .28/0.9068 29 .40/0.8818 27 .78 /0.8527 26 .55/0.8273 29 .78/0.8805 

WBF 34 .59 / 0.9436 31 .39/0.9088 29 .41 /0.8814 27 .78 /0.8520 26 .55/0.8271 29 .94 /0.8825 

MBF 34 .18/0.9206 31 .21/0.8908 29 .23/0.8663 27 .73/0.8447 26 .74 /0.8291 29 .81/0.8703 

EBF 34 .48/0.9399 31 .27/0.9064 29 .22/ 0.8835 27 .65/ 0.8600 26 .40/ 0.8373 29 .81/ 0.8854 

Hill (512 × 512) BF 32 .24/0.9711 28 .77/0.9375 26 .64/0.9036 24 .96/0.8699 23 .49/0.8326 27 .22/0.9029 

RBF 31 .74/0.9714 29 .39/0.9424 27 .99/0.9115 26 .92/0.8826 26 .07/0.8596 28 .42/0.9135 

WBF 32 .66 /0.9737 29 .68 /0.9419 28 .08 /0.9104 26 .95 /0.8816 26 .08 /0.8591 28 .69 /0.9133 

MBF 31 .78/0.9600 28 .83/0.9180 27 .42/0.8876 26 .52/0.8675 25 .82/0.8478 28 .07/0.8961 

EBF 32 .42/ 0.9758 29 .48/ 0.9443 27 .87/ 0.9198 26 .77/ 0.8968 25 .91/ 0.8795 28 .49/ 0.9232 

Man (512 × 512) BF 32 .45/0.9728 28 .78/0.9393 26 .52/0.9054 24 .81/0.8711 23 .33/0.8395 27 .17/0.9056 

RBF 32 .01/0.9741 29 .53/0.9452 27 .96/0.9159 26 .75/0.8842 25 .83/0.8617 28 .41/0.9162 

WBF 32 .98/0.9763 29 .81 /0.9443 28 .05 /0.9147 26 .77 /0.8830 25 .84 /0.8610 28 .69 /0.9158 

MBF 32 .10/0.9631 28 .92/0.9222 27 .30/0.8920 26 .26/0.8703 25 .52/0.8536 28 .02/0.9002 

EBF 33 .05/0.9777 29 .70/ 0.9458 27 .92/ 0.9205 26 .68/ 0.8978 25 .68/ 0.8792 28 .61/0.9242 

Montage (256 × 256) BF 34 .62/0.9514 30 .04/0.8881 27 .20/0.8240 24 .84/0.7582 23 .15/0.7063 27 .97/0.8256 

RBF 32 .49/0.9359 29 .76/0.8968 27 .63/0.8493 26 .02/0.8283 24 .77/0.7918 28 .13/0.8604 

WBF 34 .86/0.9508 30 .88/0.8984 28 .32/0.8452 26 .43/0.8130 24 .93/0.7786 29 .08/0.8572 

MBF 34 .61/0.9484 30 .90/0.9168 28 .67/0.8930 26 .83/0.8732 25 .52/0.8557 29 .30/0.8974 

EBF 35 .83/0.9596 31 .95/0.9328 29 .30/0.9049 26 .99/0.8739 25 .01/0.8434 29 .80/0.9029 
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tive ˆ σr (EBF). From Fig. 7 , we can see that EBF2 obtains higher

PSNR values than EBF1 in most cases, which demonstrates the ef-

fectiveness of the new range distance | x (p ) − x (q ) | 2 . It is worth

mentioning that for image Barbara shown in Fig. 7 (b), EBF2 ob-

tains a small amount of improvement compared with EBF1. This is

because rich textures are distributed in the image Barbara and can

be easily smoothed by BF in the first stage. Moreover, EBF further

improves the PSNR values over EBF2. This is because our adaptive

ˆ σr captures the varying local geometry, thus leading to better per-

formance. 

5.4. Comparison with other denoising methods 

5.4.1. Quantitative metrics 

In Table 2 , we quantify the performance of various denoising

methods for the test images at various noise levels in terms of

PSNR and FSIM. The best results are set in bold. For FSIM, it can

be observed that the proposed EBF obtains the best results in most

cases, which implies the advantage of EBF in preserving the im-

age structures. For PSNR, we can see that EBF achieves the best re-

sults for some images, such as the images Barbara, Cameraman , and

Montage . The proposed EBF and WBF obtain comparable perfor-

mance in terms of PSNR, and outperform other denoising methods
n most cases. Besides, BF works well at low noise levels, while RBF

nd MBF perform well at high noise levels. This is the reason why

BF can remove the noise effectively at various noise levels, since

BF can take advantage of BF and RBF in an optimally weighted

ashion. In addition, it should be noted that our method performs

etter on images with rich repeated patterns and textured regions

uch as Barbara, Boat and Montage . 

.4.2. Visual quality 

To evaluate the visual quality of various methods, we show the

enoised and zoom-in results of the four images (at σ = 30 ) in

igs. 8 and 9 . It can be seen that EBF and MBF have better vi-

ual effects than other denoising methods. Specifically, MBF pro-

uces smoother images. This is explained that MBF combines BF

nd wavelet thresholding, where BF is applied to the approxima-

ion subbands to eliminate low-frequency noise components. In-

tead, the proposed EBF has more artifacts, but it performs bet-

er at the local structures (e.g. the masts of the image Boat and

he scarf of the image Barbara ). This is explained that EBF adopts

 new range distance to embed the information from the residual

mage and the denoised estimate, and uses adaptive range parame-

er to better keep the image local structures. Among all the testing

ethods, BF with the fixed range parameter has the worst visual



T. Dai et al. / Signal Processing 137 (2017) 223–234 231 

(a) Noisy image (b) BF (27.25 dB/0.9037) (c) RBF (29.56 dB/0.9222)

(d) WBF (29.58 dB/0.9213) (e) MBF (29.26 dB/0.9313) (f) EBF (29.45 dB/0.9357)

(g) Noisy image (h) BF (24.90 dB/0.9039) (i) RBF (24.27 dB/0.8970)

(j) WBF (25.12 dB/0.9045) (k) MBF (25.24 dB/0.9216) (l) EBF (25.58 dB/0.9303)

Fig. 8. Denoised and zoom-in results with different algorithms for Lena and Barbara at σ = 30 . 
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(a) Noisy image (b) BF (26.20 dB/0.9082) (c) RBF (27.44 dB/0.9151)

(d) WBF (27.58 dB/0.9143) (e) MBF (26.91 dB/0.8933) (f) EBF (27.47 dB/0.9224)

(g) Noisy image (h) BF (27.20 dB/0.8240) (i) RBF (27.63 dB/0.8493)

(j) WBF (28.32 dB/0.8452) (k) MBF (28.67 dB/0.8930) (l) EBF (29.30 dB/0.9049)

Fig. 9. Denoised and zoom-in results with different algorithms for Boat and Montage at σ = 30 . 
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Table 3 

Time complexity of various algo- 

rithms. N = # pixel number of an im- 

age, r = # the kernel radius , L e = # 

window size of entropy computation, 

L w = # window size of Wiener filter, 

and M = # wavelet filter length. 

Time complexity 

BF O ( N · r 2 ) 

RBF O ( N · r 2 ) 

WBF O ( N 2 ) 

MBF O (N 2 (M · log 2 N + 1 + r 2 )) 

Ours O (N(r 2 + L 2 e + L 2 w )) 
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uality, while EBF with adaptive range parameter excels in preserv-

ng fine structures of images. 

.5. Computational complexity 

Our EBF based denoising framework can be divided into two

tages. Most of the computational cost spends on local entropy

omputation, Wiener filter and the double application of BF, and

hus the complexity mainly depends on: the window size L e , L w 

nd the kernel radius r of entropy computation, Wiener filter and

F, respectively. For each pixel, it requires O (L 2 e ) , O (L 2 w 

) and O ( r 2 )

ime implementations for entropy computation, Wiener filter and

F, respectively. Therefore, for an image with N pixels, the time

omplexity of the proposed method is O (N(L 2 e + L 2 w 

+ r 2 )) . 

To give a more intuitive comparison, the time complexity of

ifferent denoising algorithms is summarized in Table 3 . Among

hese algorithms, MBF has the highest time complexity due to the

act that it integrates wavelet thresholding and BF into a denoising

ramework. Our method has only a little higher time complexity

han RBF and BF. In practice, L w 

and L e are close to r , therefore, we

an get better quality denoising images with little loss of compu-

ation time. 

. Conclusions 

In this paper, an adaptive entropy-based BF (EBF) with a new

ange kernel is proposed, which consists of a new range dis-

ance and adaptive range parameter selections. Specifically, the

ew range distance is derived from the approximately clean pix-

ls, which exploits pixel similarities between the denoised image

nd its residual image. With the new range distance, EBF can han-

le various noise levels. In order to consider the local structures

f images, local entropy serves as a guide to tune the range pa-

ameter, which makes our method adapt to the images with differ-

nt characteristics. Due to the new range kernel, the proposed EBF

eeps the local structures of images effectively. Experimental re-

ults demonstrate that the proposed EBF significantly outperforms

he standard BF with little loss of computation time. 
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