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Abstract

This paper studies a class of binary matrices with correlations between distinct columns
only equal to zero or one, which has reported comparable performance with random matrices
in recent studies of compressed sensing. For such matrix, we analyze its structure property
and provide an improved performance estimation.

1 Introduction

Compressed sensing aims to recover a signal x ∈ Rn with at most k nonzeros from
a linear measurement y = Ax ∈ Rn with m < n, and this goal can be realized by
solving a convex optimization problem

min ‖x̂‖1 s.t. y = Ax̂ (1)

if the sparsity k of x is sufficiently small [1]. In practice, we usually wish to maximize
the guaranteed sparsity k provided the matrix size m×n, or minimize the compression
ratio of m/n given the sparsity k. This needs us to optimize the measurement matrix
A. Now it is known that some random matrices, such as Gaussian matrices and
Bernoulli matrices, can achieve the optimal performance k ≈ m/ log(n/m) with high
probability [2]; however, the random structure restricts their practical applications. In
terms of implementation complexity, we are more interested in deterministic matrices,
especially those only with 0-1 binary elements.

Currently, binary matrices are mainly constructed with coding theory, based
on the fact that codewords usually have large mutual distances and thus strong
orthogonality [3–6]. Moreover, such matrix can also be obtained by sampling some
known orthogonal systems [7]. However, the two construction methods mentioned
above can only provide explicit performance guarantees for some particular matrix
sizes, which cannot meet the needs of practical applications. To address this problem,
we turn our attention to the parity-check matrices of LDPC codes, which have fixed
structures and comparable performance to random matrices [8]. Furthermore, as
detailed later, such kind of matrices allows to be constructed with arbitrary size, as the
compression ratio m/n is sufficiently large [8]. The construction can be implemented
with a greedy algorithm, known as the progressive edge-growth (PEG) algorithm [9].
Such matrix has a special structure property, the correlation between distinct columns
is 0-1 binary; and so it is simply called the binary matrix with binary correlation



(BMBC) hereafter. For simplicity, in the paper we mainly study the BMBC matrix
with a uniform column degree d and row degree dn/m, namely with d nonzeros per
column and dn/m nonzeros per row.

For BMBC matrices, in the paper we show that there exists an upper bound for
column degree d and a lower bound for compression ratio m/n. Beyond the two
bounds, the BMBC matrices will not exist; in other words, the property of binary
column correlations cannot be obtained. The theoretical performance of BMBC
matrix was firstly analyzed by Dimakis, et al [10]. Then, Liu and Xia provided
an explicit bound k < d for the guaranteed sparsity [11]. However, this bound is
still far from the true performance; empirically, the true guaranteed sparsity tends
to increase with the matrix size m × n, rather than upper bounded by the column
degree d. The estimation error comes from the fact that the two known performance
estimators, NSP and RIP, cannot be exactly derived [12], and often they are roughly
estimated with the maximum column correlation (namely the coherence). To cope
with this problem, in the paper we derive the distribution of column correlation for
BMBC matrix. This parameter helps us derive a better estimation for the RIP, then a
more reasonable upper bound for the guaranteed sparsity, which is not only related to
the column degree but also to the matrix size. Consider little experimental work has
been reported in the previous literature, we test the performance of BMBC matrix
over varying column degrees and compression ratios. The experiments demonstrate
that the performance of BMBC matrix with given size tends to increase with the
increase of column degree, and the maximum column degree tends to yield better
recovery performance than Gaussian random matrices at high compression ratios.

The rest of the paper is organized as follows. In Section 2, we show that the BMBC
matrix has an upper bound for column degree and a lower bound for compression
ratio, by studying the associated bipartite graph. Moreover, we derive the distribution
of column correlation for BMBC matrix. With such parameter, we provide an
improved estimation for the guaranteed sparsity of BMBC matrix in Section 3. The
empirical performance of BMBC matrix is tested in Section 4. The paper is concluded
in Section 5.

2 Structure Property of BMBC Matrix

In this section, we show that the BMBC matrix can be associated with a bipartite
graph without cycles of length 4. With the help of such graph, we easily analyze the
structure property of BMBC matrix, including the upper bound of column degree,
the lower bound of compression ratio and the distribution of column correlation.

2.1 Equivalence between binary matrix and bipartite graph

Fig.1(a) illustrates an example of bipartite graph, which contains m check nodes,
n variable nodes, and a number of edges placed between two kinds of nodes. Such
graph can be uniquely associated with an m × n-sized binary matrix, as we make
the variable nodes and check nodes correspond respectively to the matrix’s columns
and rows, and the edges correspond to the matrix’s nonzero positions. Recall this
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Figure 1: A bipartite graph in (a) and a tree expanded from a variable node in (b). The
variable nodes and check nodes are represented with circles and squares, respectively.

paper mainly studies the BMBC matrix with a uniform column degree d and row
degree nd/m, and the associated bipartite graph should have d edges incident to each
variable node and nd/m edges linked to each check node.

From each variable node, as shown in Fig.1(b), we can expand a tree by traversing
all reachable nodes through edges. The tree includes some cycles, each with length
not smaller than 4. Here the length means the number of edges included in the cycle.
For a bipartite graph with given size, it is known that the lengths of cycles tend to
decrease with the increase of the number of edges. As detailed later, this implies
that there should exist an upper bound for the number of edges, if we want to ensure
the graph have no cycles of length 4. For the convenience of analysis, as shown in
Fig.1(b), we divide the tree into multiple floors, each floor containing two kinds of
nodes. For simplicity, we often use Vi (and Ci) to denote the set of variable nodes
(and the set of check nodes) within the i-th floor of the tree. Observe that the set V1
only contains the root variable node, which has the following property.

Property 1. Given a tree expanded from a variable node. Consider the equivalence
between binary matrix and bipartite graph, we can say the root variable node of
the tree correlates with each variable node in the 2nd floor (or say in V2); and the
correlation value is the number of the check nodes (in the 1st floor, or say in C1) they
commonly connect to.

The above property leads to the following equivalence relation.

Property 2. A BMBC matrix associates with a bipartite graph without cycles of
length 4.

Proof. Consider a tree of the bipartite graph associated with the BMBC matrix (see
Fig.1(b)). To make the column correlation of BMBC matrix not greater than one,
with Property 1 we know each variable node within the 2nd floor of the tree (namely
in V2) can connect only one check node in the 1st floor (namely in C1). In this case,
the tree contains no cycles of length 4. Then the whole graph has no cycles of length
4.



2.2 Structure property of BMBC matrix

In this part, we provide three crucial structure parameters for BMBC matrix, the
upper bound of column degree, the lower bound of compression ratio and the distri-
bution of column correlation, which are detailed as follows.

In Theorem 1, we derive an upper bound d <
√
m for the column degree d, which

implies a sparse matrix structure, friendly to hardware implementation. Meanwhile,
we derive a lower bound m/n ≥ 4/(n+ 1) for the compression ratio m/n, in order to
ensure the column degree d ≥ 2. It is apparent that the lower bound on compression
ratio will restrict the application of BMBC matrix at low compression ratios. How-
ever, it is easy to see that this bound tends to go down with the increase of signal
length n, and this property is beneficial to high dimensional signals. Moreover, it is
noteworthy that the two bounds we derive for column degree and compression ratio
are not tight, and hard to be approached by the real BMBC matrices constructed
with PEG algorithm.

Theorem 1. Consider a binary matrix A ∈ {0, 1}m×n with column degree d ≥ 2 and
row degree nd/m. Suppose A>i Aj 6=i ∈ {0, 1}, where Ai denotes the i-th column of
A, i ∈ [n]. Then we can derive

d ≤ 1

2n
(m+

√
m2 + 4mn(n− 1)) (2)

and
m

n
≥ 4

n+ 1
(3)

Proof. Let us see the bipartite graph associated with A, which should have n variable
nodes and m check nodes, each variable node connecting d ≥ 2 edges and each check
node connecting nd/m edges. Expander a tree expanded from a variable node (see
Fig.1(b)); and the tree should have no cycles of length 4 according to Property 2. As
stated before, let us use Vi and Ci to denote the variable nodes in the i− th floor of
the tree. Apparently, |V1| = 1 and |C1| = d|V1| = d. Since the three has no cycles
of 4, |V2| = (dn

m
− |V1|)|C1| = d(dn

m
− 1). Note that the number of variable nodes in

the first 2 floors of the tree cannot exceed the total number of variable nodes, namely
|V1| + |V2| ≤ n, which leads to Eq. (2). Moreover, to make sure d ≥ 2, we need the
right-hand side of Eq. (2) to be greater than 2, then derive Eq. (3).

Theorem 2 provides the probability η that the column correlation of BMBC matrix
takes the value 1, rather than the value 0. It is easy to see that the value of η is
determined by the matrix size and column degree, and tends to decrease with the
increase of matrix size, as the compression ratio and column degree are fixed. This
parameter will be used in the next subsection to estimate the guaranteed sparsity of
BMBC matrix.

Theorem 2. Consider a binary matrix A ∈ {0, 1}m×n with column degree d and row
degree nd/m. Suppose A>i Aj 6=i ∈ {0, 1}, where Ai denotes the i-th column of A,
i ∈ [n]. Then,



A>i Aj 6=i =

{
1 with probability η = (nd−m)d

(n−1)m

0 with probability 1− η
(4)

Proof. This result is derived based on the fact that among n − 1 columns Aj∈[n]\i,

only (nd−m)d
m

columns correlate with the column Ai. The proof is similar to that
of Theorem 1. Expand a tree from the variable node corresponding to Ai, see the
example in Fig. 1(b). With Property 1, we know the root variable node correlates
only with the variable nodes in the 2nd floor, namely the nodes in V2; and all the
correlation values are equal to 1 since the graph has no cycles of length 4 according
to Property 1. The number of variable nodes in V2 has been derived as |V2| = (nd−m)d

m

in the proof of Theorem 1. Then the proof is completed.

3 Theoretical Performance of BMBC Matrix

In Theorem 3, we derive an upper bound of the guaranteed sparsity k for BMBC
matrix, which is determined by two parameters, the column degree d and the proba-
bility η that the column correlation takes the value 1 rather than the value 0. Since
η ∈ (0, 1), this bound should be much greater than the column degree d, namely
the previous upper bound derived in [11]. This statement is verified by the examples
shown in Table 1. As can be seen, the guaranteed sparsity derived with Eq.(5) presents
the tendency of increasing with the matrix size, as the compression ratio and column
degree are fixed.

Moreover, it is noteworthy that the guaranteed sparsity shown in Eq.(5) is derived
under the condition of d → ∞. Empirically, the condition on d is not strict due to
the following fact. In the proof of Theorem 3, we derive Eq.(8) and (10) under the
condition of k → ∞. This condition naturally leads to the condition of d → ∞, in
terms of the relation of k and d shown in Eq.(5). In practice, the approximation
errors for Eq.(8) and (10) usually can be ignored as k is not too large. This implies
that Eq.(5) can be approximately derived as d is not too large.

Theorem 3. Consider a binary matrix A ∈ {0, 1/
√
d}m×n with column degree d and

row degree nd/m. Suppose A>i Aj 6=i ∈ {0, 1/d}, where Ai denotes the i-th column of
A, i ∈ [n]; and the probability of A>i Aj 6=i = 1/d is equal to η. By Eq. (1), a signal

Table 1: The guaranteed sparsity k derived with Eq.(5) for m × n BMBC matrix with
column degree d. Recall the parameter η in Eq.(5) is derived with Eq.(4).

m = 500 and n = 1000
d 2 3 4 5 6 7 8 9 10
k 9 13 15 15 15 15 15 15 15

m = 5000 and n = 10000
d 2 3 4 5 6 7 8 9 10
k 92 134 149 152 152 149 145 141 137



x ∈ Rn with at most k nonzeros can be recovered from y = Ax ∈ Rm, if

k < η−1
(√

d+ 3− 4η − 2
√

1− η
)2

(5)

where d→∞.

Proof. The proof is established based on the result from [13]: If the measurement
matrix A satisfies the RIP condition δk < 1/3, then all signals x with at most k(> 1)
nonzeros can be recovered from y = Ax via solving Eq. (1), where δk denotes the
restricted isometry constant of A; more precisely, δk is defined to be the minimal
value belonging to the interval of (0, 1) such that

1− δk ≤ ‖Aψx‖2/‖x‖2 ≤ 1 + δk (6)

where Aψ denotes a submatrix of A formed by columns indexed by ψ ⊂ [n], |ψ| = k.
To derive the guaranteed sparsity k, the proof only needs to provide the solution

of δk. Since λmin(A>ψAψ) ≤ ‖Aψx‖2/‖x‖2 ≤ λmax(A
>
ψAψ), where λmin(A>ψAψ) and

λmax(A
>
ψAψ) denote the two extreme eigenvalues of A>ψAψ, we can write

δk =
λmax(A

>
ψAψ)− λmin(A>ψAψ)

λmax(A>ψAψ) + λmin(A>ψAψ)
(7)

wherein the two extreme eigenvalues are derived as follows.
For simplicity, let us write B = (A>ψAψ − I), where I denotes an identity matrix.

Then B is a symmetric matrix with the diagonal elements equal to zero and the
off-diagonal elements taking the nonzero value 1/d with probability η. Further, write

Q =
1√

η(1− η)
(dB− ηJ)

where J is an all-ones matrix. As in [14], with Wigner semicircle law one can derive

λmin

(
1√
k
Q

)
≥ −2

namely,
λmin(dB− ηJ) ≥ −2

√
kη(1− η), (8)

if |ψ| = k →∞.
Note that both dB− ηJ and ηJ are Hermitian matrices, and ηJ is positive semi-

definite and has the rank equal to 1. With the Cauchy interlacing inequality [15], we
have

λmin(dB) ≥ λmin(dB− ηJ),

namely

λmin(B) ≥ 1

d
· λmin(dB− ηJ) ≥ −2

d

√
kη(1− η).



It follows that

λmin(A>ψAψ) = λmin(B) + 1 ≥ −2

d

√
kη(1− η) + 1. (9)

Since λmax(dB) ≈ kη + 1 when k →∞ [16], we have

λmax(A
>
ψAψ) = λmax(B) + 1 ≈ 1

d
(k − 1)η + 1. (10)

Combine Eq.(7), (9) and (10),

δk .
kη + 2

√
kη(1− η) + 1

kη − 2
√
kη(1− η) + 2d+ 1

.

By letting δk < 1/3, we can simply derive Eq. (5). Recall Eq.(8) is derived under
the condition of k →∞, which together with the result of Eq.(5) implies the condition
of d→∞. Then the proof is completed.

4 Simulation

In this section, we test the recovery performance of BMBC matrices using the known
recovery algorithm, the subspace pursuit algorithm [17]. The input sparse signals
have nonzero elements drawn from {±1} with equal probability. The recovery error
is measured with ‖x − x̂‖/‖x‖, for which we take the average of 104 simulation
runs. The recovery is regarded successful, as the average error is smaller than 10−4.
By this means, we can find a guaranteed sparsity k for given matrix. As in [8],
the BMBC matrices are constructed with PEG algorithm [9]. As shown later, the
simulation investigates two interesting problems for BMBC matrices, the performance
change over the varying column degree and the performance comparison with random
matrices.

4.1 Performance change over the varying column degree

Fig.2 shows the guaranteed sparsity k of 500 × 1000 BMBC matrix with varying
column degree d. It is apparent that the guaranteed sparsity tends to grow with the
increase of column degree. Recall the BMBC matrix has an upper bound for the
column degree, as the matrix size is given. Then we are motivated to maximize the
column degree of BMBC matrix, so as to achieve its best performance. As in [8], we
can construct such matrix with PEG algorithm.

4.2 Performance comparison with random matrices

Here we construct a group of BMBC matrices with different compression ratios m/n,
n = 1000. To obtain the best performance for each BMBC matrix, we maximize
their column degrees, whose values are detailed in Table 2. Then we compare these
matrices with random matrices, including the Gaussian random matrices and binary



Figure 2: The guaranteed sparsity k of 500× 1000 BMBC matrix with column degree d.

Figure 3: The guaranteed sparsity k (depicted with ρ = k/m) of three types of matrices
with varying compression ratios σ = m/n, n = 1000. Note the BMBC matrix and binary
random matrix share the same column degree as detailed in Table 2.

random matrices. For fair comparison, we make the binary random matrix share the
same column degree with the BMBC matrix with the same size. From Fig.3, it can be
seen that BMBC matrices always perform better than binary random matrices, and
also outperform Gaussian random matrices as the the compression ratio is sufficiently
large, i.e. m/n > 0.3.



Table 2: The column degree of m× 1000 BMBC matrix constructed with PEG algorithm.
Each column degree has achieved its upper bound that can be obtained with PEG algorithm.

m 100 200 300 400 500 600 700 800 900
d 3 5 7 8 10 11 12 14 15

Moreover, it is noteworthy that the maximal column degree we derive with PEG
algorithm for BMBC matrix, as detailed in Table 2, is usually smaller than the
theoretical bound we can derive with Eq.(2). As stated before, this is because
the bound in Eq.(2) is not tight. This problem also occurs to the lower bound of
compression ratio derived in Eq.(3). With PEG algorithm, we can hardly construct
a BMBC matrix with compression ratio achieving the lower bound shown in Eq.(3).

5 Conclusion

This paper has studied the compressed sensing performance of binary matrix with
binary column correlations, called BMBC matrix for shorthand. It is proved that such
kind of matrices has an upper bound for column degree, as the matrix size is fixed.
Empirically, the BMBC matrix with its maximum column degree achieved tends to
perform better than the binary random matrix with the same column degree, and also
outperforms Gaussian random matrices as the compression ratio m/n is sufficiently
large. Besides performance advantage, the BMBC matrix also has the advantage of
storage and computation, because its maximum column degree is much smaller than√
m. The major drawback of such matrix is that it will not exist if the compression

ratio is below some threshold, such as n/m < 4/(n+1); fortunately, this lower bound
tends to descend with the increase of signal length. In summary, we can say the
BMBC matrix with high compression ratio is suitable for compressed sensing both in
terms of performance and complexity.
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