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Abstract. It is well known that super-resolution (SR) is a difficult prob-
lem, especially the single-frame super-resolution (SFSR). In this paper,
we propose a novel SFSR method, called compressive sampling on hybrid
reconstructions (CSHR), with high reconstruction quality and relatively
low computation cost. It mainly depends on the combination of the
results of other SR methods, which are characteristic of high speed and
low quality SR results alone. As a result, CSHR inherits the merit of low
computation cost. We resample those low quality SR results in DCT
domain instead of in pixel domain and regard the similar expansion
coefficients as consensus which would be compressively sampled later.
In CSHR, obtaining a high resolution image is only to solve a convex
optimization program. We use compressed sensing theory to ensure the
efficiency of our method. Also, we give some theoretic results. Experimen-
tal results show the effectiveness of the proposed method when compared
to some state-of-the-art methods.
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1 Introduction

Image super-resolution (SR) is to recover a high resolution (HR) image from a
series of low resolution (LR) images. SR is one of the most spotlighted research
as it can overcome the limitation of hardware, such as the chip size, shot
noise and diffraction in digital imaging system. Depending on the number of
LR images, the recovery methods could be divided into two categories: single-
frame super-resolution (SFSR) and multi-frame super-resolution (MFSR). Our
research mainly focus on the SFSR. problem.

The basic method for approximating a solution to SR recovery is through con-
ventional linear interpolators, of which the bicubic interpolator is highly prefer-
able. These SR methods and their variants have been elaborated by Park et al.
[8] and Van [11]. Besides classical interpolation methods, another representative
SR method is based on sparse representation of low and high resolution (LHR)
patch-pairs over a dictionary pair. Yang et al. [13,14] propose a method working
© Springer International Publishing Switzerland 2015

S. Arik et al. (Eds.): ICONIP 2015, Part 11T, LNCS 9491, pp. 610-618, 2015.
DOI: 10.1007/978-3-319-26555-1_69



Single-Frame Super-Resolution via Compressive Sampling 611

directly with the LR training patches and their features, which does not require
any learning on the HR patches. The LR image is viewed as a downsampling
version of the HR image, whose patches are assumed to have a sparse repre-
sentation with respect to an over-complete dictionary of prototype signalatoms.
Zeyde et al. [15] embark from Yang et al., and assume a local Sparse-Land model
on image patches served as regularization.

The most important advantage of the interpolation based methods is that
it contains low computation cost. However, the reconstruction quality is much
poorer than sparse representation based methods, because the degradation mod-
els are limited: they are only applicable when the blur and the noise character-
istics are the same for all LR images. Conversely, sparse representation of LHR
patch-pairs over a dictionary has a better reconstruction quality with higher
computational complexity. In practice, SFSR is an ill-posed problem due to the
insufficient number of observations and the unknown registration parameters. No
one knows what the original HR image exactly is. Fortunately, the only thing
we can be sure of is that all of the SR reconstructions must be similar to each
other, though different SR reconstructions are not exactly same to each other.
Since the problem is that we have several SR reconstructions for the same HR
image, yet how to use them to get a better reconstruction?

In this paper, we propose a novel compressive sampling on hybrid recon-
struction (CSHR) method with a high reconstruction quality and low compu-
tation cost. It is mainly based on some low computation cost and low recon-
struction quality methods’ results. In order to focus on our method, we mostly
deal with SFSR, although our method can be readily extended to handle multi-
frame super-resolution. In CSHR, we are focusing on the common view (the
same part) of different SR results. Even though there may be less consensus,
compressed sensing (CS) [2,4] asserts that we can recover certain signals from
many fewer samples or measurements than the traditional methods. Thus we
could use CS to recover the HR by the limited consensus. CS is good at signal
processing, however, it does not work well in image processing directly. There-
fore, we transform other different SR results into an appropriate basis, which
can be efficiently solved by CS. And we regard the similar expansion coefficients
as consensus in that appropriate basis. Then we do compressive sampling on
these consensus. Finally, we recover the HR image by solving a convex opti-
mization program. Besides, we have proved that with a high probability, the
coherence between sensing basis @ and representation basis ¥ in CSHR is less
than v/2log N. Therefore, CS theory ensures the probability of CSHR’s success.
Unlike the aforementioned sparse representation of LHR, our method does not
rely on any learning patches or over-complete dictionary. Consequently, CSHR
works more efficiently.

The rest of this paper is organized as follows. Section 2 presents our CSHR
method. We evaluate the performance of our CSHR method in Sect. 3 both in
visual appearance and numerical criteria, and compare it with state-of-the-art
methods for SFSR. Section 4 concludes the whole paper.
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2 Compressive Sampling on Hybrid Reconstructions

2.1 Observation Model

Our observation model is based on Park’s [8] multi-frame observation model.
Supposing the resolution of the original HR image @ is L1 N1 X Ly Ns, we rewrite
it in the form of a vector & = |11, 22, ...,zn]T, where N = L; Ny x LyNo. After
downsampling the HR image « with horizontal scale factor L; and vertical scale
factor La, we get the LR image f of which the resolution is N7 x Ns. Similarly,
we rewrite it in the form of a vector f = [f1, f2, ..., fu]*, where M = Ny x Ns.
Now, the image acquisition process could be expressed as follows:

f=Wx+n (1)

where W is a M x N sampling matrix which denotes the warping, blurring
and downsampling during the image acquisition and n is a M x 1 vector which
denotes the additive noise. There are two main differences between our model
and Park’s:

1. We convert the Park’s MFSR model to our SFSR model.

2. We do not consider the sub-pixel movement in matrix W as Park did, for
we focus on the SFSR problem. Hence, image registration is useless in our
method.

2.2 Compressive Sampling on Consensus

Supposing we have known K different SR methods whose results are correspond-
ing to: &1,&2,...,Lx. We regard &y as one of K different estimations for the
HR . Before we go further, let us take a look at the estimation Zx. Equation (1)
tells us that the SFSR is an ill-posed problem: what we only have is an LR obser-
vation f. By estimating the sampling matrix W and modeling the noise n, we
are able to find the HR image &; which satisfies (1). No one knows what the
HR image x exactly is, however, the only thing we can be sure of is that all the
I must be similar to @, otherwise the kth SR method is not a good recovery
method. Though different estimations are not exactly same to each other, they
must be similar to each other because of the transitive relation. In this paper,
we focus on the common part of different ;. We will transform the Z; into an
appropriate basis and then use the similar expansion coefficients.

At the beginning, we transform the estimation Zjy into a different domain ¥
instead of in pixel domain:

Yr = VT (2)

The basis ¥ has the size of m x N in (2). Ideally, &; has a sparse representation
on the basis ¥. The main role of the basis ¥ is to let the [p-norm of the binary
support vector ||sy|l;, in (3) as large as possible, that is non-zero elements in
sy as much as possible. It gives us representation of continuous image projected
onto discrete domain. Different choices of ¥ allow us to choose the domain in
which we decide to sample the image.
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Then we look for a m x 1 binary vector s, as a support for all ¢:
g =8y Uk (k=1,2,...,K) (3)

In (3) denotes element-by-element multiplication and ¢’ is the consensus of all
Uk Equation (3) means that we could abstract the consensus of all g to g’ by
the support s,. In other words, the support s, is like a mask which retains all
the similar expansion coefficients in K different yy.

Supposing @, is a p X m binary random matrix. In compressive sensing, we
could regard @, as a sensing basis, however, it does not work efficiently since it
senses too much noise which is not the consensus we need. In fact, we hope to
sample the consensus g’. Here, we could use a trick by the support vector s,:
let S, = [81,82,...,sp]T, where s = 8o = --- = s, = s,,. Now we have got a
p X m matrix ¥ which satisfies:

P =5, (4)
If we use the @ as a sensing basis:
g = Py (k=1,2,....K) (5)

we could find that:

9=2,9 (6)
¢ is the sampling result on the consensus which is what we need. Equation (5)
means that we could sample the consensus of all g to §.

1 1 1
_ 7| - 8| - 7
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Meanwhile, we will look for another N x 1 support s, which satisfies:

=8, & (k=1,2,....K) (7)
a binary random matrix ©,, the size of which is 7 x N, let S, = [s1, 82, ...,8,]T,
where 81 = 89 = -+ = 8, = 8, and then we will get
O in (8) satisfies:
T = Oz (k=1,2,...,K) (9)

Equation (9) is similar to (5): & is the similar coefficients hybrid mixture
abstracted from the K different ; by the r x N matrix 6.
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Finally, our problem is converted to recover a vector x from equation:
g = Ax (10)

where A = &V is a p x N new sampling matrix telling us information about x
on basis ¥. Moreover, the solution « in (10) should obey (9), which means our
result must be agree with the consensus of all &y.

2.3 Recovery

CS recovery uses nonlinear approximation in the transform domain, although
the measurements in (10) is linear. To solve (10) the recovery can be simplified
to solving the following convex program:

min || 2&||;, subject to Az =79 (11)

Equation (11) means that we find a N-dimention vector & which is the spars-
est in the transform domain (2 that satisfies the measurements we observed. The
constraint A& = § means that we only consider the results which could produce
the same measurements ¢ which we have observed. The /3 norm is the sum of
magnitude:

Izl = Il (12)
i=1

where z = 2&. The reasons of using [; norm are: (i) sparse signal have small
I norm relative to its energy, (ii) it is convex that makes the optimization
solvable [10].

2.4 Stability

The main result of CS theory [3,5] is that the number of measurements we need
to recover the image does depend on the complexity of image representation in
the domain we choose rather than the number of pixels we wish to recover.

CS is mainly concerned with low coherence pairs. The coherence between @
and ¥ is defined as follows:

p(@.9) = VN - max [(00,;) (13)
which means the largest correlation between any two elements of ¢ and ¥ [6]. If
@ and ¥ contain correlated elements, the coherence u(®,¥) is large, otherwise,
it is small.

From (4) we know that @ is the result of &, - 5,,

(@, %) < min(p(Py, V), p(Sy, ¥)) (14)

Since @, is a binary random matrix, with a high probability, the coherence
between &, and ¥ is about /2log N. Hence with a high probability, the coher-
ence between @ and ¥ is less than y/2log N, which indicates that @ and ¥ are
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incoherent. A most important theorem in CS [1] is that if @ in our transform
domain ¥ is S-sparse, select p measurements in the ¥ domain uniformly at
random. Then if

p>C - y*(d,¥) S -log N (15)

for some positive constant C, the solution to (11) is exact with overwhelming
probability. It is shown that the probability of success exceeds 1 — ¢ if p >
C-p2(D,¥) - S -log(N/§).

In a word, CS theory preserves that & can be exactly recovered from our
CSHR by minimizing a convex function. Solving the convex program does not
need to assume any knowledge about the number of nonzero coordinates of g,
their locations, or their amplitudes which we assume all completely unknown
priori.

3 Experimental Results

In this section, we simulated experiments to demonstrate the performance of
our CSHR method by using several standard benchmark test images!. During
the simulation scenario, we first downsample the HR test image & with both
horizontal and vertical scale factor of 2 as the LR image f. Then, we recover
the image &y, by using Nearest neighbor, Bilinear, Bicubic, ScSR [14] and TIP14
[9]. Based on these K = 5 fundamental methods, we use DCT basis as ¥ and (2.
Figures 1 and 2 gives us a visual comparison on the partial of original images.

i
/ j
£ | b

(2) Original image  (b) ScSR(4] () TIP4[9]  (d) CSHR

Fig. 1. Visual comparison on Babbon.

In addition to subjective visual comparison, we also provide the peak-signal-
to-noise ratio (PSNR) [7] as well as the structural similarity index measure
(SSIM) [12] in Table1 which are used quantitatively to measure the results of
different SR methods?. PSNR is a traditional criterion that is widely used in
signal fidelity, while SSIM is known to be more consistent with human visual
system (HVS). Results with larger PSNR and SSIM are considered to have better
results.

! http://sipi.usc.edu/database/database.php?volume=misc.
2 More results are shown in https://gist.github.com/Brilliant /7472969d4020599a13d0.
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(a) Original image (b) ScSR[14] (c) TIP14[9] (d) CSHR

Fig. 2. Visual comparison on Peppers.

Table 1. Comparison based on PSNR (dB) and SSIM

Images NN Bilinear | Bicubic | ScSR TIP14 CSHR

Airplane (U-2) 7.2.01 34.1285 | 34.0964 | 34.4150 | 34.7347 | 34.6681 | 35.0588
0.8160 | 0.8031 | 0.8188 | 0.8383| 0.8312 0.8459

Car and APCs 7.1.10 33.3599 | 33.9880 | 34.9014 | 35.8014 | 35.7503 | 36.2948

0.8574 | 0.8605 | 0.8867 | 0.9106 | 0.9072 0.9177
Girl (Lena, or Lenna) 4.2.04 31.4187 | 32.6780 | 34.1092 | 36.1288 | 36.2255 | 36.4926
0.8960 | 0.9028 | 0.9198 | 0.9367 | 0.9358 0.9419
Man 5.3.01 29.9675 | 30.8534 | 32.0520 | 33.8399 | 33.8780 | 33.8498

0.8571 | 0.8599 | 0.8865| 0.9133 | 0.9111 0.9145
Mandrill (a.k.a. Baboon) 4.2.03 | 23.1195 | 23.0403 | 23.6253 | 24.3864 | 24.3946 | 24.8038
0.6979 | 0.6553 | 0.7116 | 0.7810 | 0.7775 0.7882

Peppers 4.2.07 29.7547 | 30.9894 | 31.7423 | 32.8905 | 32.7709 | 33.2834
0.8624 | 0.8715 | 0.8843 | 0.8997 | 0.8973 0.9019
Tank 7.1.07 30.2140 | 30.4347 | 31.1732 | 31.9449 | 31.9254 | 32.3743
0.7914 | 0.7793 | 0.8166 | 0.8544 | 0.8490 0.8625
Tank 7.1.09 30.0818 | 30.2545 | 30.9968 | 31.8264 | 31.7971 | 32.3024
0.7921 | 0.7771 | 0.8150 | 0.8551 | 0.8493 0.8636
Truck and APCs 7.1.05 28.9856 | 29.3136 | 30.0591 | 30.9090 | 30.9007 | 31.3353
0.7851 | 0.7745 | 0.8122 | 0.8518 | 0.8475 0.8601
Truck and APCs 7.1.06 29.1648 | 29.5127 | 30.2673 | 31.0977 | 31.0977 | 31.5269

0.7880 | 0.7776 | 0.8157 | 0.8550 | 0.8508 0.8629

In Table 1, each cell 2 results shows: Top - image PSNR (dB), Bottom - SSIM
index, which shows the improvement in PSNR and SSIM index by applying our
method versus the other methods. The best result for each image are highlighted.
It can be seen that the proposed CSHR outperforms all the other methods,
including ScSR and TIP14 which stand for state-of-the-art method.

Also, we compare the running time of different state-of-the-art SR methods
which is shown in Fig. 3:

In Fig. 3, x-axis means the size of image in pixel we use, y-axis is the average
running time. It could be easily find that the running time of the baseline method
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Fig. 3. Running time among the methods

ScSR is the longest. Obviously, TIP14 runs fastest, because it makes use of a
statistical prediction model. Our proposed CSHR method works much faster
than ScSR, while a little slower than TIP14. It means that the running time of
CSHR is closing to the state-of-the-art method.

4 Conclusions

In this paper, in order to make use of the high speed and low quality SR results,
we proposed a novel method CSHR for solving the SFSR problem. CSHR does
not rely on any learning patches or over-complete dictionary, it is based on the
consensus of other SR reconstructions. It makes a compressive sampling on these
consensus hybrid in the pixel domain. By solving a convex optimization program,
it recovers the HR image. We have also proved that with a high probability, the
coherence between ¢ and ¥ in CSHR is less than /2log N. Thus CS theory
will ensure the efficiency of CSHR. Experimental results demonstrate the effec-
tiveness of the CSHR. CSHR is able to achieve the state-of-the-art SR results.
Our future work will focus on the choice of ¥, perhaps wavelet basis is a good
choice. We know the fact that wavelets automatically adapt to singularities in
the image; important wavelet coefficients tend to cluster around edge contours,
while large smooth regions can be built up with relatively few terms.
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